Solve for x (complex solution)
x=1+\sqrt{5}i\approx 1+2.236067977i
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{2x-6}\right)^{2}
Square both sides of the equation.
x^{2}=2x-6
Calculate \sqrt{2x-6} to the power of 2 and get 2x-6.
x^{2}-2x=-6
Subtract 2x from both sides.
x^{2}-2x+6=0
Add 6 to both sides.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-24}}{2}
Multiply -4 times 6.
x=\frac{-\left(-2\right)±\sqrt{-20}}{2}
Add 4 to -24.
x=\frac{-\left(-2\right)±2\sqrt{5}i}{2}
Take the square root of -20.
x=\frac{2±2\sqrt{5}i}{2}
The opposite of -2 is 2.
x=\frac{2+2\sqrt{5}i}{2}
Now solve the equation x=\frac{2±2\sqrt{5}i}{2} when ± is plus. Add 2 to 2i\sqrt{5}.
x=1+\sqrt{5}i
Divide 2+2i\sqrt{5} by 2.
x=\frac{-2\sqrt{5}i+2}{2}
Now solve the equation x=\frac{2±2\sqrt{5}i}{2} when ± is minus. Subtract 2i\sqrt{5} from 2.
x=-\sqrt{5}i+1
Divide 2-2i\sqrt{5} by 2.
x=1+\sqrt{5}i x=-\sqrt{5}i+1
The equation is now solved.
1+\sqrt{5}i=\sqrt{2\left(1+\sqrt{5}i\right)-6}
Substitute 1+\sqrt{5}i for x in the equation x=\sqrt{2x-6}.
1+i\times 5^{\frac{1}{2}}=1+i\times 5^{\frac{1}{2}}
Simplify. The value x=1+\sqrt{5}i satisfies the equation.
-\sqrt{5}i+1=\sqrt{2\left(-\sqrt{5}i+1\right)-6}
Substitute -\sqrt{5}i+1 for x in the equation x=\sqrt{2x-6}.
-i\times 5^{\frac{1}{2}}+1=-\left(1-i\times 5^{\frac{1}{2}}\right)
Simplify. The value x=-\sqrt{5}i+1 does not satisfy the equation.
x=1+\sqrt{5}i
Equation x=\sqrt{2x-6} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}