Solve for x
x=0
Graph
Share
Copied to clipboard
x+1=\sqrt{1-5x}
Subtract -1 from both sides of the equation.
\left(x+1\right)^{2}=\left(\sqrt{1-5x}\right)^{2}
Square both sides of the equation.
x^{2}+2x+1=\left(\sqrt{1-5x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1=1-5x
Calculate \sqrt{1-5x} to the power of 2 and get 1-5x.
x^{2}+2x+1-1=-5x
Subtract 1 from both sides.
x^{2}+2x=-5x
Subtract 1 from 1 to get 0.
x^{2}+2x+5x=0
Add 5x to both sides.
x^{2}+7x=0
Combine 2x and 5x to get 7x.
x\left(x+7\right)=0
Factor out x.
x=0 x=-7
To find equation solutions, solve x=0 and x+7=0.
0=\sqrt{1-5\times 0}-1
Substitute 0 for x in the equation x=\sqrt{1-5x}-1.
0=0
Simplify. The value x=0 satisfies the equation.
-7=\sqrt{1-5\left(-7\right)}-1
Substitute -7 for x in the equation x=\sqrt{1-5x}-1.
-7=5
Simplify. The value x=-7 does not satisfy the equation because the left and the right hand side have opposite signs.
x=0
Equation x+1=\sqrt{1-5x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}