Solve for x
x=5
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{-3x+40}\right)^{2}
Square both sides of the equation.
x^{2}=-3x+40
Calculate \sqrt{-3x+40} to the power of 2 and get -3x+40.
x^{2}+3x=40
Add 3x to both sides.
x^{2}+3x-40=0
Subtract 40 from both sides.
a+b=3 ab=-40
To solve the equation, factor x^{2}+3x-40 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,40 -2,20 -4,10 -5,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -40.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
Calculate the sum for each pair.
a=-5 b=8
The solution is the pair that gives sum 3.
\left(x-5\right)\left(x+8\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=5 x=-8
To find equation solutions, solve x-5=0 and x+8=0.
5=\sqrt{-3\times 5+40}
Substitute 5 for x in the equation x=\sqrt{-3x+40}.
5=5
Simplify. The value x=5 satisfies the equation.
-8=\sqrt{-3\left(-8\right)+40}
Substitute -8 for x in the equation x=\sqrt{-3x+40}.
-8=8
Simplify. The value x=-8 does not satisfy the equation because the left and the right hand side have opposite signs.
x=5
Equation x=\sqrt{40-3x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}