Solve for x
x=\frac{z}{2}-\frac{3}{4}
Solve for z
z=2x+\frac{3}{2}
Share
Copied to clipboard
x=\frac{2z}{4}-\frac{3}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{z}{2} times \frac{2}{2}.
x=\frac{2z-3}{4}
Since \frac{2z}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
x=\frac{1}{2}z-\frac{3}{4}
Divide each term of 2z-3 by 4 to get \frac{1}{2}z-\frac{3}{4}.
x=\frac{2z}{4}-\frac{3}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{z}{2} times \frac{2}{2}.
x=\frac{2z-3}{4}
Since \frac{2z}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
x=\frac{1}{2}z-\frac{3}{4}
Divide each term of 2z-3 by 4 to get \frac{1}{2}z-\frac{3}{4}.
\frac{1}{2}z-\frac{3}{4}=x
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}z=x+\frac{3}{4}
Add \frac{3}{4} to both sides.
\frac{\frac{1}{2}z}{\frac{1}{2}}=\frac{x+\frac{3}{4}}{\frac{1}{2}}
Multiply both sides by 2.
z=\frac{x+\frac{3}{4}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
z=2x+\frac{3}{2}
Divide x+\frac{3}{4} by \frac{1}{2} by multiplying x+\frac{3}{4} by the reciprocal of \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}