Solve for r
\left\{\begin{matrix}r=-\frac{x-x_{1}}{x-x_{2}}\text{, }&x_{1}\neq x_{2}\text{ and }x\neq x_{2}\\r\neq -1\text{, }&x_{1}=x_{2}\text{ and }x=x_{1}\end{matrix}\right.
Solve for x
x=\frac{x_{1}+rx_{2}}{r+1}
r\neq -1
Graph
Share
Copied to clipboard
x\left(r+1\right)=x_{1}+rx_{2}
Variable r cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by r+1.
xr+x=x_{1}+rx_{2}
Use the distributive property to multiply x by r+1.
xr+x-rx_{2}=x_{1}
Subtract rx_{2} from both sides.
xr-rx_{2}=x_{1}-x
Subtract x from both sides.
\left(x-x_{2}\right)r=x_{1}-x
Combine all terms containing r.
\frac{\left(x-x_{2}\right)r}{x-x_{2}}=\frac{x_{1}-x}{x-x_{2}}
Divide both sides by x-x_{2}.
r=\frac{x_{1}-x}{x-x_{2}}
Dividing by x-x_{2} undoes the multiplication by x-x_{2}.
r=\frac{x_{1}-x}{x-x_{2}}\text{, }r\neq -1
Variable r cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}