Solve for a
\left\{\begin{matrix}a=\frac{x-z}{x}\text{, }&x\neq z\text{ and }x\neq 0\\a\neq 0\text{, }&x=0\text{ and }z=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{z}{a-1}\text{, }&a\neq 1\text{ and }a\neq 0\\x\in \mathrm{R}\text{, }&a=1\text{ and }z=0\end{matrix}\right.
Share
Copied to clipboard
xa=x-z
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
\frac{xa}{x}=\frac{x-z}{x}
Divide both sides by x.
a=\frac{x-z}{x}
Dividing by x undoes the multiplication by x.
a=\frac{x-z}{x}\text{, }a\neq 0
Variable a cannot be equal to 0.
x-\frac{x-z}{a}=0
Subtract \frac{x-z}{a} from both sides.
\frac{xa}{a}-\frac{x-z}{a}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{a}{a}.
\frac{xa-\left(x-z\right)}{a}=0
Since \frac{xa}{a} and \frac{x-z}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{xa-x+z}{a}=0
Do the multiplications in xa-\left(x-z\right).
xa-x+z=0
Multiply both sides of the equation by a.
xa-x=-z
Subtract z from both sides. Anything subtracted from zero gives its negation.
\left(a-1\right)x=-z
Combine all terms containing x.
\frac{\left(a-1\right)x}{a-1}=-\frac{z}{a-1}
Divide both sides by a-1.
x=-\frac{z}{a-1}
Dividing by a-1 undoes the multiplication by a-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}