Solve for p
p=\frac{2\left(x+25\right)}{25}
Solve for x
x=\frac{25\left(p-2\right)}{2}
Graph
Share
Copied to clipboard
x=\frac{p-2}{2\times \frac{1}{25}}
Calculate -5 to the power of -2 and get \frac{1}{25}.
x=\frac{p-2}{\frac{2}{25}}
Multiply 2 and \frac{1}{25} to get \frac{2}{25}.
x=\frac{p}{\frac{2}{25}}+\frac{-2}{\frac{2}{25}}
Divide each term of p-2 by \frac{2}{25} to get \frac{p}{\frac{2}{25}}+\frac{-2}{\frac{2}{25}}.
x=\frac{p}{\frac{2}{25}}-2\times \frac{25}{2}
Divide -2 by \frac{2}{25} by multiplying -2 by the reciprocal of \frac{2}{25}.
x=\frac{p}{\frac{2}{25}}-25
Multiply -2 and \frac{25}{2} to get -25.
\frac{p}{\frac{2}{25}}-25=x
Swap sides so that all variable terms are on the left hand side.
\frac{p}{\frac{2}{25}}=x+25
Add 25 to both sides.
\frac{25}{2}p=x+25
The equation is in standard form.
\frac{\frac{25}{2}p}{\frac{25}{2}}=\frac{x+25}{\frac{25}{2}}
Divide both sides of the equation by \frac{25}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
p=\frac{x+25}{\frac{25}{2}}
Dividing by \frac{25}{2} undoes the multiplication by \frac{25}{2}.
p=\frac{2x}{25}+2
Divide x+25 by \frac{25}{2} by multiplying x+25 by the reciprocal of \frac{25}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}