Solve for T
T=x\times 3^{n}
Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{2\pi n_{1}i}{\ln(3)}-\log_{3}\left(\frac{x}{T}\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&x\neq 0\text{ and }T\neq 0\\n\in \mathrm{C}\text{, }&x=0\text{ and }T=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\log_{3}\left(\frac{T}{x}\right)\text{, }&\left(T<0\text{ and }x<0\right)\text{ or }\left(T>0\text{ and }x>0\right)\\n\in \mathrm{R}\text{, }&x=0\text{ and }T=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{T}{3^{n}}=x
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3^{n}}T=x
The equation is in standard form.
\frac{\frac{1}{3^{n}}T\times 3^{n}}{1}=\frac{x\times 3^{n}}{1}
Divide both sides by 3^{-n}.
T=\frac{x\times 3^{n}}{1}
Dividing by 3^{-n} undoes the multiplication by 3^{-n}.
T=x\times 3^{n}
Divide x by 3^{-n}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}