Solve for A
\left\{\begin{matrix}A=-\frac{BL}{L-2Bx}\text{, }&B\neq 0\text{ and }L\neq 0\text{ and }x\neq \frac{L}{2B}\text{ and }L\neq 2Bx\\A\neq 0\text{, }&L=0\text{ and }x=0\text{ and }B\neq 0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{AL}{L-2Ax}\text{, }&A\neq 0\text{ and }L\neq 0\text{ and }x\neq \frac{L}{2A}\text{ and }L\neq 2Ax\\B\neq 0\text{, }&L=0\text{ and }x=0\text{ and }A\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
xAB=BL+AL-xAB
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by AB, the least common multiple of A,B.
xAB-AL=BL-xAB
Subtract AL from both sides.
xAB-AL+xAB=BL
Add xAB to both sides.
2xAB-AL=BL
Combine xAB and xAB to get 2xAB.
\left(2xB-L\right)A=BL
Combine all terms containing A.
\left(2Bx-L\right)A=BL
The equation is in standard form.
\frac{\left(2Bx-L\right)A}{2Bx-L}=\frac{BL}{2Bx-L}
Divide both sides by 2xB-L.
A=\frac{BL}{2Bx-L}
Dividing by 2xB-L undoes the multiplication by 2xB-L.
A=\frac{BL}{2Bx-L}\text{, }A\neq 0
Variable A cannot be equal to 0.
xAB=BL+AL-xAB
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by AB, the least common multiple of A,B.
xAB-BL=AL-xAB
Subtract BL from both sides.
xAB-BL+xAB=AL
Add xAB to both sides.
2xAB-BL=AL
Combine xAB and xAB to get 2xAB.
\left(2xA-L\right)B=AL
Combine all terms containing B.
\left(2Ax-L\right)B=AL
The equation is in standard form.
\frac{\left(2Ax-L\right)B}{2Ax-L}=\frac{AL}{2Ax-L}
Divide both sides by 2xA-L.
B=\frac{AL}{2Ax-L}
Dividing by 2xA-L undoes the multiplication by 2xA-L.
B=\frac{AL}{2Ax-L}\text{, }B\neq 0
Variable B cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}