Solve for x
x = \frac{\sqrt{1414041} + 1571}{62} \approx 44.518299343
x = \frac{1571 - \sqrt{1414041}}{62} \approx 6.159120012
Graph
Share
Copied to clipboard
x-\frac{8500+10x}{1581-31x}=0
Subtract \frac{8500+10x}{1581-31x} from both sides.
x-\frac{8500+10x}{31\left(-x+51\right)}=0
Factor 1581-31x.
\frac{x\times 31\left(-x+51\right)}{31\left(-x+51\right)}-\frac{8500+10x}{31\left(-x+51\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{31\left(-x+51\right)}{31\left(-x+51\right)}.
\frac{x\times 31\left(-x+51\right)-\left(8500+10x\right)}{31\left(-x+51\right)}=0
Since \frac{x\times 31\left(-x+51\right)}{31\left(-x+51\right)} and \frac{8500+10x}{31\left(-x+51\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-31x^{2}+1581x-8500-10x}{31\left(-x+51\right)}=0
Do the multiplications in x\times 31\left(-x+51\right)-\left(8500+10x\right).
\frac{-31x^{2}+1571x-8500}{31\left(-x+51\right)}=0
Combine like terms in -31x^{2}+1581x-8500-10x.
\frac{-31\left(x-\left(-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)\left(x-\left(\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)}{31\left(-x+51\right)}=0
Factor the expressions that are not already factored in \frac{-31x^{2}+1571x-8500}{31\left(-x+51\right)}.
\frac{-\left(x-\left(-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)\left(x-\left(\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)}{-x+51}=0
Cancel out 31 in both numerator and denominator.
-\left(x-\left(-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)\left(x-\left(\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)=0
Variable x cannot be equal to 51 since division by zero is not defined. Multiply both sides of the equation by -x+51.
-\left(x+\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}\right)\left(x-\left(\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)=0
To find the opposite of -\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}, find the opposite of each term.
-\left(x+\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}\right)\left(x-\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}\right)=0
To find the opposite of \frac{1}{62}\sqrt{1414041}+\frac{1571}{62}, find the opposite of each term.
\left(-x-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\left(x-\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}\right)=0
Use the distributive property to multiply -1 by x+\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}.
-x^{2}+\frac{1571}{31}x+\frac{1}{3844}\left(\sqrt{1414041}\right)^{2}-\frac{2468041}{3844}=0
Use the distributive property to multiply -x-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62} by x-\frac{1}{62}\sqrt{1414041}-\frac{1571}{62} and combine like terms.
-x^{2}+\frac{1571}{31}x+\frac{1}{3844}\times 1414041-\frac{2468041}{3844}=0
The square of \sqrt{1414041} is 1414041.
-x^{2}+\frac{1571}{31}x+\frac{1414041}{3844}-\frac{2468041}{3844}=0
Multiply \frac{1}{3844} and 1414041 to get \frac{1414041}{3844}.
-x^{2}+\frac{1571}{31}x-\frac{8500}{31}=0
Subtract \frac{2468041}{3844} from \frac{1414041}{3844} to get -\frac{8500}{31}.
x=\frac{-\frac{1571}{31}±\sqrt{\left(\frac{1571}{31}\right)^{2}-4\left(-1\right)\left(-\frac{8500}{31}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{1571}{31} for b, and -\frac{8500}{31} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1571}{31}±\sqrt{\frac{2468041}{961}-4\left(-1\right)\left(-\frac{8500}{31}\right)}}{2\left(-1\right)}
Square \frac{1571}{31} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1571}{31}±\sqrt{\frac{2468041}{961}+4\left(-\frac{8500}{31}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{1571}{31}±\sqrt{\frac{2468041}{961}-\frac{34000}{31}}}{2\left(-1\right)}
Multiply 4 times -\frac{8500}{31}.
x=\frac{-\frac{1571}{31}±\sqrt{\frac{1414041}{961}}}{2\left(-1\right)}
Add \frac{2468041}{961} to -\frac{34000}{31} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1571}{31}±\frac{\sqrt{1414041}}{31}}{2\left(-1\right)}
Take the square root of \frac{1414041}{961}.
x=\frac{-\frac{1571}{31}±\frac{\sqrt{1414041}}{31}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{1414041}-1571}{-2\times 31}
Now solve the equation x=\frac{-\frac{1571}{31}±\frac{\sqrt{1414041}}{31}}{-2} when ± is plus. Add -\frac{1571}{31} to \frac{\sqrt{1414041}}{31}.
x=\frac{1571-\sqrt{1414041}}{62}
Divide \frac{-1571+\sqrt{1414041}}{31} by -2.
x=\frac{-\sqrt{1414041}-1571}{-2\times 31}
Now solve the equation x=\frac{-\frac{1571}{31}±\frac{\sqrt{1414041}}{31}}{-2} when ± is minus. Subtract \frac{\sqrt{1414041}}{31} from -\frac{1571}{31}.
x=\frac{\sqrt{1414041}+1571}{62}
Divide \frac{-1571-\sqrt{1414041}}{31} by -2.
x=\frac{1571-\sqrt{1414041}}{62} x=\frac{\sqrt{1414041}+1571}{62}
The equation is now solved.
x-\frac{8500+10x}{1581-31x}=0
Subtract \frac{8500+10x}{1581-31x} from both sides.
x-\frac{8500+10x}{31\left(-x+51\right)}=0
Factor 1581-31x.
\frac{x\times 31\left(-x+51\right)}{31\left(-x+51\right)}-\frac{8500+10x}{31\left(-x+51\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{31\left(-x+51\right)}{31\left(-x+51\right)}.
\frac{x\times 31\left(-x+51\right)-\left(8500+10x\right)}{31\left(-x+51\right)}=0
Since \frac{x\times 31\left(-x+51\right)}{31\left(-x+51\right)} and \frac{8500+10x}{31\left(-x+51\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-31x^{2}+1581x-8500-10x}{31\left(-x+51\right)}=0
Do the multiplications in x\times 31\left(-x+51\right)-\left(8500+10x\right).
\frac{-31x^{2}+1571x-8500}{31\left(-x+51\right)}=0
Combine like terms in -31x^{2}+1581x-8500-10x.
\frac{-31\left(x-\left(-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)\left(x-\left(\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)}{31\left(-x+51\right)}=0
Factor the expressions that are not already factored in \frac{-31x^{2}+1571x-8500}{31\left(-x+51\right)}.
\frac{-\left(x-\left(-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)\left(x-\left(\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)}{-x+51}=0
Cancel out 31 in both numerator and denominator.
-\left(x-\left(-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)\left(x-\left(\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)=0
Variable x cannot be equal to 51 since division by zero is not defined. Multiply both sides of the equation by -x+51.
-\left(x+\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}\right)\left(x-\left(\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\right)=0
To find the opposite of -\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}, find the opposite of each term.
-\left(x+\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}\right)\left(x-\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}\right)=0
To find the opposite of \frac{1}{62}\sqrt{1414041}+\frac{1571}{62}, find the opposite of each term.
\left(-x-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62}\right)\left(x-\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}\right)=0
Use the distributive property to multiply -1 by x+\frac{1}{62}\sqrt{1414041}-\frac{1571}{62}.
-x^{2}+\frac{1571}{31}x+\frac{1}{3844}\left(\sqrt{1414041}\right)^{2}-\frac{2468041}{3844}=0
Use the distributive property to multiply -x-\frac{1}{62}\sqrt{1414041}+\frac{1571}{62} by x-\frac{1}{62}\sqrt{1414041}-\frac{1571}{62} and combine like terms.
-x^{2}+\frac{1571}{31}x+\frac{1}{3844}\times 1414041-\frac{2468041}{3844}=0
The square of \sqrt{1414041} is 1414041.
-x^{2}+\frac{1571}{31}x+\frac{1414041}{3844}-\frac{2468041}{3844}=0
Multiply \frac{1}{3844} and 1414041 to get \frac{1414041}{3844}.
-x^{2}+\frac{1571}{31}x-\frac{8500}{31}=0
Subtract \frac{2468041}{3844} from \frac{1414041}{3844} to get -\frac{8500}{31}.
-x^{2}+\frac{1571}{31}x=\frac{8500}{31}
Add \frac{8500}{31} to both sides. Anything plus zero gives itself.
\frac{-x^{2}+\frac{1571}{31}x}{-1}=\frac{\frac{8500}{31}}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{1571}{31}}{-1}x=\frac{\frac{8500}{31}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{1571}{31}x=\frac{\frac{8500}{31}}{-1}
Divide \frac{1571}{31} by -1.
x^{2}-\frac{1571}{31}x=-\frac{8500}{31}
Divide \frac{8500}{31} by -1.
x^{2}-\frac{1571}{31}x+\left(-\frac{1571}{62}\right)^{2}=-\frac{8500}{31}+\left(-\frac{1571}{62}\right)^{2}
Divide -\frac{1571}{31}, the coefficient of the x term, by 2 to get -\frac{1571}{62}. Then add the square of -\frac{1571}{62} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1571}{31}x+\frac{2468041}{3844}=-\frac{8500}{31}+\frac{2468041}{3844}
Square -\frac{1571}{62} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1571}{31}x+\frac{2468041}{3844}=\frac{1414041}{3844}
Add -\frac{8500}{31} to \frac{2468041}{3844} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1571}{62}\right)^{2}=\frac{1414041}{3844}
Factor x^{2}-\frac{1571}{31}x+\frac{2468041}{3844}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1571}{62}\right)^{2}}=\sqrt{\frac{1414041}{3844}}
Take the square root of both sides of the equation.
x-\frac{1571}{62}=\frac{\sqrt{1414041}}{62} x-\frac{1571}{62}=-\frac{\sqrt{1414041}}{62}
Simplify.
x=\frac{\sqrt{1414041}+1571}{62} x=\frac{1571-\sqrt{1414041}}{62}
Add \frac{1571}{62} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}