Solve for x (complex solution)
x=\frac{-\sqrt{23}i-5}{8}\approx -0.625-0.59947894i
x=\frac{-5+\sqrt{23}i}{8}\approx -0.625+0.59947894i
Graph
Share
Copied to clipboard
x-\frac{5x^{2}+6x+3}{x+1}=0
Subtract \frac{5x^{2}+6x+3}{x+1} from both sides.
\frac{x\left(x+1\right)}{x+1}-\frac{5x^{2}+6x+3}{x+1}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+1}{x+1}.
\frac{x\left(x+1\right)-\left(5x^{2}+6x+3\right)}{x+1}=0
Since \frac{x\left(x+1\right)}{x+1} and \frac{5x^{2}+6x+3}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x-5x^{2}-6x-3}{x+1}=0
Do the multiplications in x\left(x+1\right)-\left(5x^{2}+6x+3\right).
\frac{-4x^{2}-5x-3}{x+1}=0
Combine like terms in x^{2}+x-5x^{2}-6x-3.
-4x^{2}-5x-3=0
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+16\left(-3\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-5\right)±\sqrt{25-48}}{2\left(-4\right)}
Multiply 16 times -3.
x=\frac{-\left(-5\right)±\sqrt{-23}}{2\left(-4\right)}
Add 25 to -48.
x=\frac{-\left(-5\right)±\sqrt{23}i}{2\left(-4\right)}
Take the square root of -23.
x=\frac{5±\sqrt{23}i}{2\left(-4\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{23}i}{-8}
Multiply 2 times -4.
x=\frac{5+\sqrt{23}i}{-8}
Now solve the equation x=\frac{5±\sqrt{23}i}{-8} when ± is plus. Add 5 to i\sqrt{23}.
x=\frac{-\sqrt{23}i-5}{8}
Divide 5+i\sqrt{23} by -8.
x=\frac{-\sqrt{23}i+5}{-8}
Now solve the equation x=\frac{5±\sqrt{23}i}{-8} when ± is minus. Subtract i\sqrt{23} from 5.
x=\frac{-5+\sqrt{23}i}{8}
Divide 5-i\sqrt{23} by -8.
x=\frac{-\sqrt{23}i-5}{8} x=\frac{-5+\sqrt{23}i}{8}
The equation is now solved.
x-\frac{5x^{2}+6x+3}{x+1}=0
Subtract \frac{5x^{2}+6x+3}{x+1} from both sides.
\frac{x\left(x+1\right)}{x+1}-\frac{5x^{2}+6x+3}{x+1}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+1}{x+1}.
\frac{x\left(x+1\right)-\left(5x^{2}+6x+3\right)}{x+1}=0
Since \frac{x\left(x+1\right)}{x+1} and \frac{5x^{2}+6x+3}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x-5x^{2}-6x-3}{x+1}=0
Do the multiplications in x\left(x+1\right)-\left(5x^{2}+6x+3\right).
\frac{-4x^{2}-5x-3}{x+1}=0
Combine like terms in x^{2}+x-5x^{2}-6x-3.
-4x^{2}-5x-3=0
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
-4x^{2}-5x=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{-4x^{2}-5x}{-4}=\frac{3}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{5}{-4}\right)x=\frac{3}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+\frac{5}{4}x=\frac{3}{-4}
Divide -5 by -4.
x^{2}+\frac{5}{4}x=-\frac{3}{4}
Divide 3 by -4.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=-\frac{3}{4}+\left(\frac{5}{8}\right)^{2}
Divide \frac{5}{4}, the coefficient of the x term, by 2 to get \frac{5}{8}. Then add the square of \frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{3}{4}+\frac{25}{64}
Square \frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{23}{64}
Add -\frac{3}{4} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{8}\right)^{2}=-\frac{23}{64}
Factor x^{2}+\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{-\frac{23}{64}}
Take the square root of both sides of the equation.
x+\frac{5}{8}=\frac{\sqrt{23}i}{8} x+\frac{5}{8}=-\frac{\sqrt{23}i}{8}
Simplify.
x=\frac{-5+\sqrt{23}i}{8} x=\frac{-\sqrt{23}i-5}{8}
Subtract \frac{5}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}