Solve for x
x = \frac{15}{11} = 1\frac{4}{11} \approx 1.363636364
Assign x
x≔\frac{15}{11}
Graph
Share
Copied to clipboard
x=\frac{5-\frac{4\left(-5\right)}{11}}{5}
Express 4\left(-\frac{5}{11}\right) as a single fraction.
x=\frac{5-\frac{-20}{11}}{5}
Multiply 4 and -5 to get -20.
x=\frac{5-\left(-\frac{20}{11}\right)}{5}
Fraction \frac{-20}{11} can be rewritten as -\frac{20}{11} by extracting the negative sign.
x=\frac{5+\frac{20}{11}}{5}
The opposite of -\frac{20}{11} is \frac{20}{11}.
x=\frac{\frac{55}{11}+\frac{20}{11}}{5}
Convert 5 to fraction \frac{55}{11}.
x=\frac{\frac{55+20}{11}}{5}
Since \frac{55}{11} and \frac{20}{11} have the same denominator, add them by adding their numerators.
x=\frac{\frac{75}{11}}{5}
Add 55 and 20 to get 75.
x=\frac{75}{11\times 5}
Express \frac{\frac{75}{11}}{5} as a single fraction.
x=\frac{75}{55}
Multiply 11 and 5 to get 55.
x=\frac{15}{11}
Reduce the fraction \frac{75}{55} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}