Solve for y
y=-\frac{x+2}{1-x}
x\neq 1
Solve for x
x=\frac{y+2}{y-1}
y\neq 1
Graph
Share
Copied to clipboard
x\left(y-1\right)=5-2y+\left(y-1\right)\times 3
Variable y cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by y-1.
xy-x=5-2y+\left(y-1\right)\times 3
Use the distributive property to multiply x by y-1.
xy-x=5-2y+3y-3
Use the distributive property to multiply y-1 by 3.
xy-x=5+y-3
Combine -2y and 3y to get y.
xy-x=2+y
Subtract 3 from 5 to get 2.
xy-x-y=2
Subtract y from both sides.
xy-y=2+x
Add x to both sides.
\left(x-1\right)y=2+x
Combine all terms containing y.
\left(x-1\right)y=x+2
The equation is in standard form.
\frac{\left(x-1\right)y}{x-1}=\frac{x+2}{x-1}
Divide both sides by x-1.
y=\frac{x+2}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
y=\frac{x+2}{x-1}\text{, }y\neq 1
Variable y cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}