Solve for x
x=\frac{\sqrt{26}}{2}-2\approx 0.549509757
x=-\frac{\sqrt{26}}{2}-2\approx -4.549509757
Graph
Share
Copied to clipboard
x=\frac{5}{8+2x}
Use the distributive property to multiply 2 by 4+x.
x-\frac{5}{8+2x}=0
Subtract \frac{5}{8+2x} from both sides.
x-\frac{5}{2\left(x+4\right)}=0
Factor 8+2x.
\frac{x\times 2\left(x+4\right)}{2\left(x+4\right)}-\frac{5}{2\left(x+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2\left(x+4\right)}{2\left(x+4\right)}.
\frac{x\times 2\left(x+4\right)-5}{2\left(x+4\right)}=0
Since \frac{x\times 2\left(x+4\right)}{2\left(x+4\right)} and \frac{5}{2\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+8x-5}{2\left(x+4\right)}=0
Do the multiplications in x\times 2\left(x+4\right)-5.
\frac{2\left(x-\left(-\frac{1}{2}\sqrt{26}-2\right)\right)\left(x-\left(\frac{1}{2}\sqrt{26}-2\right)\right)}{2\left(x+4\right)}=0
Factor the expressions that are not already factored in \frac{2x^{2}+8x-5}{2\left(x+4\right)}.
\frac{\left(x-\left(-\frac{1}{2}\sqrt{26}-2\right)\right)\left(x-\left(\frac{1}{2}\sqrt{26}-2\right)\right)}{x+4}=0
Cancel out 2 in both numerator and denominator.
\left(x-\left(-\frac{1}{2}\sqrt{26}-2\right)\right)\left(x-\left(\frac{1}{2}\sqrt{26}-2\right)\right)=0
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
\left(x+\frac{1}{2}\sqrt{26}+2\right)\left(x-\left(\frac{1}{2}\sqrt{26}-2\right)\right)=0
To find the opposite of -\frac{1}{2}\sqrt{26}-2, find the opposite of each term.
\left(x+\frac{1}{2}\sqrt{26}+2\right)\left(x-\frac{1}{2}\sqrt{26}+2\right)=0
To find the opposite of \frac{1}{2}\sqrt{26}-2, find the opposite of each term.
x^{2}+4x-\frac{1}{4}\left(\sqrt{26}\right)^{2}+4=0
Use the distributive property to multiply x+\frac{1}{2}\sqrt{26}+2 by x-\frac{1}{2}\sqrt{26}+2 and combine like terms.
x^{2}+4x-\frac{1}{4}\times 26+4=0
The square of \sqrt{26} is 26.
x^{2}+4x-\frac{13}{2}+4=0
Multiply -\frac{1}{4} and 26 to get -\frac{13}{2}.
x^{2}+4x-\frac{5}{2}=0
Add -\frac{13}{2} and 4 to get -\frac{5}{2}.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{5}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -\frac{5}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{5}{2}\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+10}}{2}
Multiply -4 times -\frac{5}{2}.
x=\frac{-4±\sqrt{26}}{2}
Add 16 to 10.
x=\frac{\sqrt{26}-4}{2}
Now solve the equation x=\frac{-4±\sqrt{26}}{2} when ± is plus. Add -4 to \sqrt{26}.
x=\frac{\sqrt{26}}{2}-2
Divide -4+\sqrt{26} by 2.
x=\frac{-\sqrt{26}-4}{2}
Now solve the equation x=\frac{-4±\sqrt{26}}{2} when ± is minus. Subtract \sqrt{26} from -4.
x=-\frac{\sqrt{26}}{2}-2
Divide -4-\sqrt{26} by 2.
x=\frac{\sqrt{26}}{2}-2 x=-\frac{\sqrt{26}}{2}-2
The equation is now solved.
x=\frac{5}{8+2x}
Use the distributive property to multiply 2 by 4+x.
x-\frac{5}{8+2x}=0
Subtract \frac{5}{8+2x} from both sides.
x-\frac{5}{2\left(x+4\right)}=0
Factor 8+2x.
\frac{x\times 2\left(x+4\right)}{2\left(x+4\right)}-\frac{5}{2\left(x+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2\left(x+4\right)}{2\left(x+4\right)}.
\frac{x\times 2\left(x+4\right)-5}{2\left(x+4\right)}=0
Since \frac{x\times 2\left(x+4\right)}{2\left(x+4\right)} and \frac{5}{2\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+8x-5}{2\left(x+4\right)}=0
Do the multiplications in x\times 2\left(x+4\right)-5.
\frac{2\left(x-\left(-\frac{1}{2}\sqrt{26}-2\right)\right)\left(x-\left(\frac{1}{2}\sqrt{26}-2\right)\right)}{2\left(x+4\right)}=0
Factor the expressions that are not already factored in \frac{2x^{2}+8x-5}{2\left(x+4\right)}.
\frac{\left(x-\left(-\frac{1}{2}\sqrt{26}-2\right)\right)\left(x-\left(\frac{1}{2}\sqrt{26}-2\right)\right)}{x+4}=0
Cancel out 2 in both numerator and denominator.
\left(x-\left(-\frac{1}{2}\sqrt{26}-2\right)\right)\left(x-\left(\frac{1}{2}\sqrt{26}-2\right)\right)=0
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
\left(x+\frac{1}{2}\sqrt{26}+2\right)\left(x-\left(\frac{1}{2}\sqrt{26}-2\right)\right)=0
To find the opposite of -\frac{1}{2}\sqrt{26}-2, find the opposite of each term.
\left(x+\frac{1}{2}\sqrt{26}+2\right)\left(x-\frac{1}{2}\sqrt{26}+2\right)=0
To find the opposite of \frac{1}{2}\sqrt{26}-2, find the opposite of each term.
x^{2}+4x-\frac{1}{4}\left(\sqrt{26}\right)^{2}+4=0
Use the distributive property to multiply x+\frac{1}{2}\sqrt{26}+2 by x-\frac{1}{2}\sqrt{26}+2 and combine like terms.
x^{2}+4x-\frac{1}{4}\times 26+4=0
The square of \sqrt{26} is 26.
x^{2}+4x-\frac{13}{2}+4=0
Multiply -\frac{1}{4} and 26 to get -\frac{13}{2}.
x^{2}+4x-\frac{5}{2}=0
Add -\frac{13}{2} and 4 to get -\frac{5}{2}.
x^{2}+4x=\frac{5}{2}
Add \frac{5}{2} to both sides. Anything plus zero gives itself.
x^{2}+4x+2^{2}=\frac{5}{2}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=\frac{5}{2}+4
Square 2.
x^{2}+4x+4=\frac{13}{2}
Add \frac{5}{2} to 4.
\left(x+2\right)^{2}=\frac{13}{2}
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{\frac{13}{2}}
Take the square root of both sides of the equation.
x+2=\frac{\sqrt{26}}{2} x+2=-\frac{\sqrt{26}}{2}
Simplify.
x=\frac{\sqrt{26}}{2}-2 x=-\frac{\sqrt{26}}{2}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}