Solve for x
x = \frac{4 {(\sqrt{6} + 3 \sqrt{3})}}{7} \approx 4.36893838
Assign x
x≔\frac{4\sqrt{3}\left(\sqrt{2}+3\right)}{7}
Graph
Share
Copied to clipboard
x=\frac{4\sqrt{3}\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}
Rationalize the denominator of \frac{4\sqrt{3}}{3-\sqrt{2}} by multiplying numerator and denominator by 3+\sqrt{2}.
x=\frac{4\sqrt{3}\left(3+\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{4\sqrt{3}\left(3+\sqrt{2}\right)}{9-2}
Square 3. Square \sqrt{2}.
x=\frac{4\sqrt{3}\left(3+\sqrt{2}\right)}{7}
Subtract 2 from 9 to get 7.
x=\frac{12\sqrt{3}+4\sqrt{3}\sqrt{2}}{7}
Use the distributive property to multiply 4\sqrt{3} by 3+\sqrt{2}.
x=\frac{12\sqrt{3}+4\sqrt{6}}{7}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
x=\frac{12}{7}\sqrt{3}+\frac{4}{7}\sqrt{6}
Divide each term of 12\sqrt{3}+4\sqrt{6} by 7 to get \frac{12}{7}\sqrt{3}+\frac{4}{7}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}