Skip to main content
Solve for k (complex solution)
Tick mark Image
Solve for t (complex solution)
Tick mark Image
Solve for k
Tick mark Image
Solve for t
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=\frac{3}{7}kt+\frac{3}{7}y
Use the distributive property to multiply \frac{3}{7} by kt+y.
\frac{3}{7}kt+\frac{3}{7}y=x
Swap sides so that all variable terms are on the left hand side.
\frac{3}{7}kt=x-\frac{3}{7}y
Subtract \frac{3}{7}y from both sides.
\frac{3t}{7}k=-\frac{3y}{7}+x
The equation is in standard form.
\frac{7\times \frac{3t}{7}k}{3t}=\frac{7\left(-\frac{3y}{7}+x\right)}{3t}
Divide both sides by \frac{3}{7}t.
k=\frac{7\left(-\frac{3y}{7}+x\right)}{3t}
Dividing by \frac{3}{7}t undoes the multiplication by \frac{3}{7}t.
k=\frac{7x-3y}{3t}
Divide x-\frac{3y}{7} by \frac{3}{7}t.
x=\frac{3}{7}kt+\frac{3}{7}y
Use the distributive property to multiply \frac{3}{7} by kt+y.
\frac{3}{7}kt+\frac{3}{7}y=x
Swap sides so that all variable terms are on the left hand side.
\frac{3}{7}kt=x-\frac{3}{7}y
Subtract \frac{3}{7}y from both sides.
\frac{3k}{7}t=-\frac{3y}{7}+x
The equation is in standard form.
\frac{7\times \frac{3k}{7}t}{3k}=\frac{7\left(-\frac{3y}{7}+x\right)}{3k}
Divide both sides by \frac{3}{7}k.
t=\frac{7\left(-\frac{3y}{7}+x\right)}{3k}
Dividing by \frac{3}{7}k undoes the multiplication by \frac{3}{7}k.
t=\frac{7x-3y}{3k}
Divide x-\frac{3y}{7} by \frac{3}{7}k.
x=\frac{3}{7}kt+\frac{3}{7}y
Use the distributive property to multiply \frac{3}{7} by kt+y.
\frac{3}{7}kt+\frac{3}{7}y=x
Swap sides so that all variable terms are on the left hand side.
\frac{3}{7}kt=x-\frac{3}{7}y
Subtract \frac{3}{7}y from both sides.
\frac{3t}{7}k=-\frac{3y}{7}+x
The equation is in standard form.
\frac{7\times \frac{3t}{7}k}{3t}=\frac{7\left(-\frac{3y}{7}+x\right)}{3t}
Divide both sides by \frac{3}{7}t.
k=\frac{7\left(-\frac{3y}{7}+x\right)}{3t}
Dividing by \frac{3}{7}t undoes the multiplication by \frac{3}{7}t.
k=\frac{7x-3y}{3t}
Divide x-\frac{3y}{7} by \frac{3}{7}t.
x=\frac{3}{7}kt+\frac{3}{7}y
Use the distributive property to multiply \frac{3}{7} by kt+y.
\frac{3}{7}kt+\frac{3}{7}y=x
Swap sides so that all variable terms are on the left hand side.
\frac{3}{7}kt=x-\frac{3}{7}y
Subtract \frac{3}{7}y from both sides.
\frac{3k}{7}t=-\frac{3y}{7}+x
The equation is in standard form.
\frac{7\times \frac{3k}{7}t}{3k}=\frac{7\left(-\frac{3y}{7}+x\right)}{3k}
Divide both sides by \frac{3}{7}k.
t=\frac{7\left(-\frac{3y}{7}+x\right)}{3k}
Dividing by \frac{3}{7}k undoes the multiplication by \frac{3}{7}k.
t=\frac{7x-3y}{3k}
Divide x-\frac{3y}{7} by \frac{3}{7}k.