Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{3y-7x}{3t}\text{, }&t\neq 0\\k\in \mathrm{C}\text{, }&x=\frac{3y}{7}\text{ and }t=0\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}t=-\frac{3y-7x}{3k}\text{, }&k\neq 0\\t\in \mathrm{C}\text{, }&x=\frac{3y}{7}\text{ and }k=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{3y-7x}{3t}\text{, }&t\neq 0\\k\in \mathrm{R}\text{, }&x=\frac{3y}{7}\text{ and }t=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=-\frac{3y-7x}{3k}\text{, }&k\neq 0\\t\in \mathrm{R}\text{, }&x=\frac{3y}{7}\text{ and }k=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x=\frac{3}{7}kt+\frac{3}{7}y
Use the distributive property to multiply \frac{3}{7} by kt+y.
\frac{3}{7}kt+\frac{3}{7}y=x
Swap sides so that all variable terms are on the left hand side.
\frac{3}{7}kt=x-\frac{3}{7}y
Subtract \frac{3}{7}y from both sides.
\frac{3t}{7}k=-\frac{3y}{7}+x
The equation is in standard form.
\frac{7\times \frac{3t}{7}k}{3t}=\frac{7\left(-\frac{3y}{7}+x\right)}{3t}
Divide both sides by \frac{3}{7}t.
k=\frac{7\left(-\frac{3y}{7}+x\right)}{3t}
Dividing by \frac{3}{7}t undoes the multiplication by \frac{3}{7}t.
k=\frac{7x-3y}{3t}
Divide x-\frac{3y}{7} by \frac{3}{7}t.
x=\frac{3}{7}kt+\frac{3}{7}y
Use the distributive property to multiply \frac{3}{7} by kt+y.
\frac{3}{7}kt+\frac{3}{7}y=x
Swap sides so that all variable terms are on the left hand side.
\frac{3}{7}kt=x-\frac{3}{7}y
Subtract \frac{3}{7}y from both sides.
\frac{3k}{7}t=-\frac{3y}{7}+x
The equation is in standard form.
\frac{7\times \frac{3k}{7}t}{3k}=\frac{7\left(-\frac{3y}{7}+x\right)}{3k}
Divide both sides by \frac{3}{7}k.
t=\frac{7\left(-\frac{3y}{7}+x\right)}{3k}
Dividing by \frac{3}{7}k undoes the multiplication by \frac{3}{7}k.
t=\frac{7x-3y}{3k}
Divide x-\frac{3y}{7} by \frac{3}{7}k.
x=\frac{3}{7}kt+\frac{3}{7}y
Use the distributive property to multiply \frac{3}{7} by kt+y.
\frac{3}{7}kt+\frac{3}{7}y=x
Swap sides so that all variable terms are on the left hand side.
\frac{3}{7}kt=x-\frac{3}{7}y
Subtract \frac{3}{7}y from both sides.
\frac{3t}{7}k=-\frac{3y}{7}+x
The equation is in standard form.
\frac{7\times \frac{3t}{7}k}{3t}=\frac{7\left(-\frac{3y}{7}+x\right)}{3t}
Divide both sides by \frac{3}{7}t.
k=\frac{7\left(-\frac{3y}{7}+x\right)}{3t}
Dividing by \frac{3}{7}t undoes the multiplication by \frac{3}{7}t.
k=\frac{7x-3y}{3t}
Divide x-\frac{3y}{7} by \frac{3}{7}t.
x=\frac{3}{7}kt+\frac{3}{7}y
Use the distributive property to multiply \frac{3}{7} by kt+y.
\frac{3}{7}kt+\frac{3}{7}y=x
Swap sides so that all variable terms are on the left hand side.
\frac{3}{7}kt=x-\frac{3}{7}y
Subtract \frac{3}{7}y from both sides.
\frac{3k}{7}t=-\frac{3y}{7}+x
The equation is in standard form.
\frac{7\times \frac{3k}{7}t}{3k}=\frac{7\left(-\frac{3y}{7}+x\right)}{3k}
Divide both sides by \frac{3}{7}k.
t=\frac{7\left(-\frac{3y}{7}+x\right)}{3k}
Dividing by \frac{3}{7}k undoes the multiplication by \frac{3}{7}k.
t=\frac{7x-3y}{3k}
Divide x-\frac{3y}{7} by \frac{3}{7}k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}