Solve for x (complex solution)
x=-\frac{304}{25}+\frac{297}{25}i=-12.16+11.88i
x=-\frac{304}{25}-\frac{297}{25}i=-12.16-11.88i
Graph
Share
Copied to clipboard
x=\frac{25}{2}\times \frac{289+34x+x^{2}}{121}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(17+x\right)^{2}.
x=\frac{25\left(289+34x+x^{2}\right)}{2\times 121}
Multiply \frac{25}{2} times \frac{289+34x+x^{2}}{121} by multiplying numerator times numerator and denominator times denominator.
x=\frac{25\left(289+34x+x^{2}\right)}{242}
Multiply 2 and 121 to get 242.
x-\frac{25\left(289+34x+x^{2}\right)}{242}=0
Subtract \frac{25\left(289+34x+x^{2}\right)}{242} from both sides.
x-\frac{7225+850x+25x^{2}}{242}=0
Use the distributive property to multiply 25 by 289+34x+x^{2}.
x-\left(\frac{7225}{242}+\frac{425}{121}x+\frac{25}{242}x^{2}\right)=0
Divide each term of 7225+850x+25x^{2} by 242 to get \frac{7225}{242}+\frac{425}{121}x+\frac{25}{242}x^{2}.
x-\frac{7225}{242}-\frac{425}{121}x-\frac{25}{242}x^{2}=0
To find the opposite of \frac{7225}{242}+\frac{425}{121}x+\frac{25}{242}x^{2}, find the opposite of each term.
-\frac{304}{121}x-\frac{7225}{242}-\frac{25}{242}x^{2}=0
Combine x and -\frac{425}{121}x to get -\frac{304}{121}x.
-\frac{25}{242}x^{2}-\frac{304}{121}x-\frac{7225}{242}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{304}{121}\right)±\sqrt{\left(-\frac{304}{121}\right)^{2}-4\left(-\frac{25}{242}\right)\left(-\frac{7225}{242}\right)}}{2\left(-\frac{25}{242}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{25}{242} for a, -\frac{304}{121} for b, and -\frac{7225}{242} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{304}{121}\right)±\sqrt{\frac{92416}{14641}-4\left(-\frac{25}{242}\right)\left(-\frac{7225}{242}\right)}}{2\left(-\frac{25}{242}\right)}
Square -\frac{304}{121} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{304}{121}\right)±\sqrt{\frac{92416}{14641}+\frac{50}{121}\left(-\frac{7225}{242}\right)}}{2\left(-\frac{25}{242}\right)}
Multiply -4 times -\frac{25}{242}.
x=\frac{-\left(-\frac{304}{121}\right)±\sqrt{\frac{92416-180625}{14641}}}{2\left(-\frac{25}{242}\right)}
Multiply \frac{50}{121} times -\frac{7225}{242} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{304}{121}\right)±\sqrt{-\frac{729}{121}}}{2\left(-\frac{25}{242}\right)}
Add \frac{92416}{14641} to -\frac{180625}{14641} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{304}{121}\right)±\frac{27}{11}i}{2\left(-\frac{25}{242}\right)}
Take the square root of -\frac{729}{121}.
x=\frac{\frac{304}{121}±\frac{27}{11}i}{2\left(-\frac{25}{242}\right)}
The opposite of -\frac{304}{121} is \frac{304}{121}.
x=\frac{\frac{304}{121}±\frac{27}{11}i}{-\frac{25}{121}}
Multiply 2 times -\frac{25}{242}.
x=\frac{\frac{304}{121}+\frac{27}{11}i}{-\frac{25}{121}}
Now solve the equation x=\frac{\frac{304}{121}±\frac{27}{11}i}{-\frac{25}{121}} when ± is plus. Add \frac{304}{121} to \frac{27}{11}i.
x=-\frac{304}{25}-\frac{297}{25}i
Divide \frac{304}{121}+\frac{27}{11}i by -\frac{25}{121} by multiplying \frac{304}{121}+\frac{27}{11}i by the reciprocal of -\frac{25}{121}.
x=\frac{\frac{304}{121}-\frac{27}{11}i}{-\frac{25}{121}}
Now solve the equation x=\frac{\frac{304}{121}±\frac{27}{11}i}{-\frac{25}{121}} when ± is minus. Subtract \frac{27}{11}i from \frac{304}{121}.
x=-\frac{304}{25}+\frac{297}{25}i
Divide \frac{304}{121}-\frac{27}{11}i by -\frac{25}{121} by multiplying \frac{304}{121}-\frac{27}{11}i by the reciprocal of -\frac{25}{121}.
x=-\frac{304}{25}-\frac{297}{25}i x=-\frac{304}{25}+\frac{297}{25}i
The equation is now solved.
x=\frac{25}{2}\times \frac{289+34x+x^{2}}{121}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(17+x\right)^{2}.
x=\frac{25\left(289+34x+x^{2}\right)}{2\times 121}
Multiply \frac{25}{2} times \frac{289+34x+x^{2}}{121} by multiplying numerator times numerator and denominator times denominator.
x=\frac{25\left(289+34x+x^{2}\right)}{242}
Multiply 2 and 121 to get 242.
x-\frac{25\left(289+34x+x^{2}\right)}{242}=0
Subtract \frac{25\left(289+34x+x^{2}\right)}{242} from both sides.
x-\frac{7225+850x+25x^{2}}{242}=0
Use the distributive property to multiply 25 by 289+34x+x^{2}.
x-\left(\frac{7225}{242}+\frac{425}{121}x+\frac{25}{242}x^{2}\right)=0
Divide each term of 7225+850x+25x^{2} by 242 to get \frac{7225}{242}+\frac{425}{121}x+\frac{25}{242}x^{2}.
x-\frac{7225}{242}-\frac{425}{121}x-\frac{25}{242}x^{2}=0
To find the opposite of \frac{7225}{242}+\frac{425}{121}x+\frac{25}{242}x^{2}, find the opposite of each term.
-\frac{304}{121}x-\frac{7225}{242}-\frac{25}{242}x^{2}=0
Combine x and -\frac{425}{121}x to get -\frac{304}{121}x.
-\frac{304}{121}x-\frac{25}{242}x^{2}=\frac{7225}{242}
Add \frac{7225}{242} to both sides. Anything plus zero gives itself.
-\frac{25}{242}x^{2}-\frac{304}{121}x=\frac{7225}{242}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{25}{242}x^{2}-\frac{304}{121}x}{-\frac{25}{242}}=\frac{\frac{7225}{242}}{-\frac{25}{242}}
Divide both sides of the equation by -\frac{25}{242}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{304}{121}}{-\frac{25}{242}}\right)x=\frac{\frac{7225}{242}}{-\frac{25}{242}}
Dividing by -\frac{25}{242} undoes the multiplication by -\frac{25}{242}.
x^{2}+\frac{608}{25}x=\frac{\frac{7225}{242}}{-\frac{25}{242}}
Divide -\frac{304}{121} by -\frac{25}{242} by multiplying -\frac{304}{121} by the reciprocal of -\frac{25}{242}.
x^{2}+\frac{608}{25}x=-289
Divide \frac{7225}{242} by -\frac{25}{242} by multiplying \frac{7225}{242} by the reciprocal of -\frac{25}{242}.
x^{2}+\frac{608}{25}x+\left(\frac{304}{25}\right)^{2}=-289+\left(\frac{304}{25}\right)^{2}
Divide \frac{608}{25}, the coefficient of the x term, by 2 to get \frac{304}{25}. Then add the square of \frac{304}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{608}{25}x+\frac{92416}{625}=-289+\frac{92416}{625}
Square \frac{304}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{608}{25}x+\frac{92416}{625}=-\frac{88209}{625}
Add -289 to \frac{92416}{625}.
\left(x+\frac{304}{25}\right)^{2}=-\frac{88209}{625}
Factor x^{2}+\frac{608}{25}x+\frac{92416}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{304}{25}\right)^{2}}=\sqrt{-\frac{88209}{625}}
Take the square root of both sides of the equation.
x+\frac{304}{25}=\frac{297}{25}i x+\frac{304}{25}=-\frac{297}{25}i
Simplify.
x=-\frac{304}{25}+\frac{297}{25}i x=-\frac{304}{25}-\frac{297}{25}i
Subtract \frac{304}{25} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}