Solve for g (complex solution)
\left\{\begin{matrix}g=\frac{x}{2k}\text{, }&k\neq 0\\g\in \mathrm{C}\text{, }&x=0\text{ and }k=0\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{x}{2g}\text{, }&g\neq 0\\k\in \mathrm{C}\text{, }&x=0\text{ and }g=0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{x}{2k}\text{, }&k\neq 0\\g\in \mathrm{R}\text{, }&x=0\text{ and }k=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{x}{2g}\text{, }&g\neq 0\\k\in \mathrm{R}\text{, }&x=0\text{ and }g=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{3}kg=x
Swap sides so that all variable terms are on the left hand side.
\frac{2}{3}kg=x-\frac{2}{3}x
Subtract \frac{2}{3}x from both sides.
\frac{2}{3}kg=\frac{1}{3}x
Combine x and -\frac{2}{3}x to get \frac{1}{3}x.
\frac{2k}{3}g=\frac{x}{3}
The equation is in standard form.
\frac{3\times \frac{2k}{3}g}{2k}=\frac{x}{3\times \frac{2k}{3}}
Divide both sides by \frac{2}{3}k.
g=\frac{x}{3\times \frac{2k}{3}}
Dividing by \frac{2}{3}k undoes the multiplication by \frac{2}{3}k.
g=\frac{x}{2k}
Divide \frac{x}{3} by \frac{2}{3}k.
\frac{2}{3}x+\frac{2}{3}kg=x
Swap sides so that all variable terms are on the left hand side.
\frac{2}{3}kg=x-\frac{2}{3}x
Subtract \frac{2}{3}x from both sides.
\frac{2}{3}kg=\frac{1}{3}x
Combine x and -\frac{2}{3}x to get \frac{1}{3}x.
\frac{2g}{3}k=\frac{x}{3}
The equation is in standard form.
\frac{3\times \frac{2g}{3}k}{2g}=\frac{x}{3\times \frac{2g}{3}}
Divide both sides by \frac{2}{3}g.
k=\frac{x}{3\times \frac{2g}{3}}
Dividing by \frac{2}{3}g undoes the multiplication by \frac{2}{3}g.
k=\frac{x}{2g}
Divide \frac{x}{3} by \frac{2}{3}g.
\frac{2}{3}x+\frac{2}{3}kg=x
Swap sides so that all variable terms are on the left hand side.
\frac{2}{3}kg=x-\frac{2}{3}x
Subtract \frac{2}{3}x from both sides.
\frac{2}{3}kg=\frac{1}{3}x
Combine x and -\frac{2}{3}x to get \frac{1}{3}x.
\frac{2k}{3}g=\frac{x}{3}
The equation is in standard form.
\frac{3\times \frac{2k}{3}g}{2k}=\frac{x}{3\times \frac{2k}{3}}
Divide both sides by \frac{2}{3}k.
g=\frac{x}{3\times \frac{2k}{3}}
Dividing by \frac{2}{3}k undoes the multiplication by \frac{2}{3}k.
g=\frac{x}{2k}
Divide \frac{x}{3} by \frac{2}{3}k.
\frac{2}{3}x+\frac{2}{3}kg=x
Swap sides so that all variable terms are on the left hand side.
\frac{2}{3}kg=x-\frac{2}{3}x
Subtract \frac{2}{3}x from both sides.
\frac{2}{3}kg=\frac{1}{3}x
Combine x and -\frac{2}{3}x to get \frac{1}{3}x.
\frac{2g}{3}k=\frac{x}{3}
The equation is in standard form.
\frac{3\times \frac{2g}{3}k}{2g}=\frac{x}{3\times \frac{2g}{3}}
Divide both sides by \frac{2}{3}g.
k=\frac{x}{3\times \frac{2g}{3}}
Dividing by \frac{2}{3}g undoes the multiplication by \frac{2}{3}g.
k=\frac{x}{2g}
Divide \frac{x}{3} by \frac{2}{3}g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}