Solve for y
y=\frac{151-9x}{11}
Solve for x
x=\frac{151-11y}{9}
Graph
Share
Copied to clipboard
x=\frac{151}{9}-\frac{11}{9}y
Divide each term of 151-11y by 9 to get \frac{151}{9}-\frac{11}{9}y.
\frac{151}{9}-\frac{11}{9}y=x
Swap sides so that all variable terms are on the left hand side.
-\frac{11}{9}y=x-\frac{151}{9}
Subtract \frac{151}{9} from both sides.
\frac{-\frac{11}{9}y}{-\frac{11}{9}}=\frac{x-\frac{151}{9}}{-\frac{11}{9}}
Divide both sides of the equation by -\frac{11}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{x-\frac{151}{9}}{-\frac{11}{9}}
Dividing by -\frac{11}{9} undoes the multiplication by -\frac{11}{9}.
y=\frac{151-9x}{11}
Divide x-\frac{151}{9} by -\frac{11}{9} by multiplying x-\frac{151}{9} by the reciprocal of -\frac{11}{9}.
x=\frac{151}{9}-\frac{11}{9}y
Divide each term of 151-11y by 9 to get \frac{151}{9}-\frac{11}{9}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}