Solve for v
v=-\frac{23x}{10}+16
Solve for x
x=\frac{160-10v}{23}
Graph
Share
Copied to clipboard
x=\frac{16-v}{2.3}
Add 13 and 3 to get 16.
x=\frac{16}{2.3}+\frac{-v}{2.3}
Divide each term of 16-v by 2.3 to get \frac{16}{2.3}+\frac{-v}{2.3}.
x=\frac{160}{23}+\frac{-v}{2.3}
Expand \frac{16}{2.3} by multiplying both numerator and the denominator by 10.
x=\frac{160}{23}-\frac{10}{23}v
Divide -v by 2.3 to get -\frac{10}{23}v.
\frac{160}{23}-\frac{10}{23}v=x
Swap sides so that all variable terms are on the left hand side.
-\frac{10}{23}v=x-\frac{160}{23}
Subtract \frac{160}{23} from both sides.
\frac{-\frac{10}{23}v}{-\frac{10}{23}}=\frac{x-\frac{160}{23}}{-\frac{10}{23}}
Divide both sides of the equation by -\frac{10}{23}, which is the same as multiplying both sides by the reciprocal of the fraction.
v=\frac{x-\frac{160}{23}}{-\frac{10}{23}}
Dividing by -\frac{10}{23} undoes the multiplication by -\frac{10}{23}.
v=-\frac{23x}{10}+16
Divide x-\frac{160}{23} by -\frac{10}{23} by multiplying x-\frac{160}{23} by the reciprocal of -\frac{10}{23}.
x=\frac{16-v}{2.3}
Add 13 and 3 to get 16.
x=\frac{16}{2.3}+\frac{-v}{2.3}
Divide each term of 16-v by 2.3 to get \frac{16}{2.3}+\frac{-v}{2.3}.
x=\frac{160}{23}+\frac{-v}{2.3}
Expand \frac{16}{2.3} by multiplying both numerator and the denominator by 10.
x=\frac{160}{23}-\frac{10}{23}v
Divide -v by 2.3 to get -\frac{10}{23}v.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}