Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=\frac{12x+\sqrt{-12x^{2}-20x}}{2}
Multiply 4 and 5 to get 20.
x-\frac{12x+\sqrt{-12x^{2}-20x}}{2}=0
Subtract \frac{12x+\sqrt{-12x^{2}-20x}}{2} from both sides.
2x-\left(12x+\sqrt{-12x^{2}-20x}\right)=0
Multiply both sides of the equation by 2.
2x-12x-\sqrt{-12x^{2}-20x}=0
To find the opposite of 12x+\sqrt{-12x^{2}-20x}, find the opposite of each term.
-10x-\sqrt{-12x^{2}-20x}=0
Combine 2x and -12x to get -10x.
-\sqrt{-12x^{2}-20x}=10x
Subtract -10x from both sides of the equation.
\left(-\sqrt{-12x^{2}-20x}\right)^{2}=\left(10x\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{-12x^{2}-20x}\right)^{2}=\left(10x\right)^{2}
Expand \left(-\sqrt{-12x^{2}-20x}\right)^{2}.
1\left(\sqrt{-12x^{2}-20x}\right)^{2}=\left(10x\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(-12x^{2}-20x\right)=\left(10x\right)^{2}
Calculate \sqrt{-12x^{2}-20x} to the power of 2 and get -12x^{2}-20x.
-12x^{2}-20x=\left(10x\right)^{2}
Use the distributive property to multiply 1 by -12x^{2}-20x.
-12x^{2}-20x=10^{2}x^{2}
Expand \left(10x\right)^{2}.
-12x^{2}-20x=100x^{2}
Calculate 10 to the power of 2 and get 100.
-12x^{2}-20x-100x^{2}=0
Subtract 100x^{2} from both sides.
-112x^{2}-20x=0
Combine -12x^{2} and -100x^{2} to get -112x^{2}.
x\left(-112x-20\right)=0
Factor out x.
x=0 x=-\frac{5}{28}
To find equation solutions, solve x=0 and -112x-20=0.
0=\frac{12\times 0+\sqrt{-12\times 0^{2}-4\times 5\times 0}}{2}
Substitute 0 for x in the equation x=\frac{12x+\sqrt{-12x^{2}-4\times 5x}}{2}.
0=0
Simplify. The value x=0 satisfies the equation.
-\frac{5}{28}=\frac{12\left(-\frac{5}{28}\right)+\sqrt{-12\left(-\frac{5}{28}\right)^{2}-4\times 5\left(-\frac{5}{28}\right)}}{2}
Substitute -\frac{5}{28} for x in the equation x=\frac{12x+\sqrt{-12x^{2}-4\times 5x}}{2}.
-\frac{5}{28}=-\frac{5}{28}
Simplify. The value x=-\frac{5}{28} satisfies the equation.
x=0 x=-\frac{5}{28}
List all solutions of -\sqrt{-12x^{2}-20x}=10x.