Solve for S
S=\frac{c\left(x+100\right)}{100}
c\neq 0
Solve for c
\left\{\begin{matrix}c=\frac{100S}{x+100}\text{, }&S\neq 0\text{ and }x\neq -100\\c\neq 0\text{, }&S=0\text{ and }x=-100\end{matrix}\right.
Graph
Share
Copied to clipboard
xc=100\left(S-c\right)
Multiply both sides of the equation by c.
xc=100S-100c
Use the distributive property to multiply 100 by S-c.
100S-100c=xc
Swap sides so that all variable terms are on the left hand side.
100S=xc+100c
Add 100c to both sides.
100S=cx+100c
The equation is in standard form.
\frac{100S}{100}=\frac{c\left(x+100\right)}{100}
Divide both sides by 100.
S=\frac{c\left(x+100\right)}{100}
Dividing by 100 undoes the multiplication by 100.
S=\frac{cx}{100}+c
Divide c\left(100+x\right) by 100.
xc=100\left(S-c\right)
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by c.
xc=100S-100c
Use the distributive property to multiply 100 by S-c.
xc+100c=100S
Add 100c to both sides.
\left(x+100\right)c=100S
Combine all terms containing c.
\frac{\left(x+100\right)c}{x+100}=\frac{100S}{x+100}
Divide both sides by x+100.
c=\frac{100S}{x+100}
Dividing by x+100 undoes the multiplication by x+100.
c=\frac{100S}{x+100}\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}