Solve for x
x = \frac{\sqrt{145} + 1}{12} \approx 1.086799548
x=\frac{1-\sqrt{145}}{12}\approx -0.920132882
Graph
Share
Copied to clipboard
x=\frac{6}{6x}+\frac{x}{6x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 6 is 6x. Multiply \frac{1}{x} times \frac{6}{6}. Multiply \frac{1}{6} times \frac{x}{x}.
x=\frac{6+x}{6x}
Since \frac{6}{6x} and \frac{x}{6x} have the same denominator, add them by adding their numerators.
x-\frac{6+x}{6x}=0
Subtract \frac{6+x}{6x} from both sides.
\frac{x\times 6x}{6x}-\frac{6+x}{6x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{6x}{6x}.
\frac{x\times 6x-\left(6+x\right)}{6x}=0
Since \frac{x\times 6x}{6x} and \frac{6+x}{6x} have the same denominator, subtract them by subtracting their numerators.
\frac{6x^{2}-6-x}{6x}=0
Do the multiplications in x\times 6x-\left(6+x\right).
\frac{6\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{6x}=0
Factor the expressions that are not already factored in \frac{6x^{2}-6-x}{6x}.
\frac{\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{x}=0
Cancel out 6 in both numerator and denominator.
\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\left(x-\left(-\frac{1}{12}\sqrt{145}\right)-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
To find the opposite of -\frac{1}{12}\sqrt{145}+\frac{1}{12}, find the opposite of each term.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
The opposite of -\frac{1}{12}\sqrt{145} is \frac{1}{12}\sqrt{145}.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)=0
To find the opposite of \frac{1}{12}\sqrt{145}+\frac{1}{12}, find the opposite of each term.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)\sqrt{145}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Apply the distributive property by multiplying each term of x+\frac{1}{12}\sqrt{145}-\frac{1}{12} by each term of x-\frac{1}{12}\sqrt{145}-\frac{1}{12}.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply \sqrt{145} and \sqrt{145} to get 145.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Combine x\left(-\frac{1}{12}\right)\sqrt{145} and \frac{1}{12}\sqrt{145}x to get 0.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145}{12}\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply \frac{1}{12} and 145 to get \frac{145}{12}.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145\left(-1\right)}{12\times 12}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply \frac{145}{12} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{-145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Do the multiplications in the fraction \frac{145\left(-1\right)}{12\times 12}.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Fraction \frac{-145}{144} can be rewritten as -\frac{145}{144} by extracting the negative sign.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply \frac{1}{12} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{-1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Do the multiplications in the fraction \frac{1\left(-1\right)}{12\times 12}.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Fraction \frac{-1}{144} can be rewritten as -\frac{1}{144} by extracting the negative sign.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Combine x\left(-\frac{1}{12}\right) and -\frac{1}{12}x to get -\frac{1}{6}x.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{-\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply -\frac{1}{12} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Do the multiplications in the fraction \frac{-\left(-1\right)}{12\times 12}.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Combine -\frac{1}{144}\sqrt{145} and \frac{1}{144}\sqrt{145} to get 0.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{-\left(-1\right)}{12\times 12}=0
Multiply -\frac{1}{12} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{1}{144}=0
Do the multiplications in the fraction \frac{-\left(-1\right)}{12\times 12}.
x^{2}-\frac{1}{6}x+\frac{-145+1}{144}=0
Since -\frac{145}{144} and \frac{1}{144} have the same denominator, add them by adding their numerators.
x^{2}-\frac{1}{6}x+\frac{-144}{144}=0
Add -145 and 1 to get -144.
x^{2}-\frac{1}{6}x-1=0
Divide -144 by 144 to get -1.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\left(-\frac{1}{6}\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{1}{6} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}-4\left(-1\right)}}{2}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}+4}}{2}
Multiply -4 times -1.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{145}{36}}}{2}
Add \frac{1}{36} to 4.
x=\frac{-\left(-\frac{1}{6}\right)±\frac{\sqrt{145}}{6}}{2}
Take the square root of \frac{145}{36}.
x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2}
The opposite of -\frac{1}{6} is \frac{1}{6}.
x=\frac{\sqrt{145}+1}{2\times 6}
Now solve the equation x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2} when ± is plus. Add \frac{1}{6} to \frac{\sqrt{145}}{6}.
x=\frac{\sqrt{145}+1}{12}
Divide \frac{1+\sqrt{145}}{6} by 2.
x=\frac{1-\sqrt{145}}{2\times 6}
Now solve the equation x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2} when ± is minus. Subtract \frac{\sqrt{145}}{6} from \frac{1}{6}.
x=\frac{1-\sqrt{145}}{12}
Divide \frac{1-\sqrt{145}}{6} by 2.
x=\frac{\sqrt{145}+1}{12} x=\frac{1-\sqrt{145}}{12}
The equation is now solved.
x=\frac{6}{6x}+\frac{x}{6x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 6 is 6x. Multiply \frac{1}{x} times \frac{6}{6}. Multiply \frac{1}{6} times \frac{x}{x}.
x=\frac{6+x}{6x}
Since \frac{6}{6x} and \frac{x}{6x} have the same denominator, add them by adding their numerators.
x-\frac{6+x}{6x}=0
Subtract \frac{6+x}{6x} from both sides.
\frac{x\times 6x}{6x}-\frac{6+x}{6x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{6x}{6x}.
\frac{x\times 6x-\left(6+x\right)}{6x}=0
Since \frac{x\times 6x}{6x} and \frac{6+x}{6x} have the same denominator, subtract them by subtracting their numerators.
\frac{6x^{2}-6-x}{6x}=0
Do the multiplications in x\times 6x-\left(6+x\right).
\frac{6\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{6x}=0
Factor the expressions that are not already factored in \frac{6x^{2}-6-x}{6x}.
\frac{\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{x}=0
Cancel out 6 in both numerator and denominator.
\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\left(x-\left(-\frac{1}{12}\sqrt{145}\right)-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
To find the opposite of -\frac{1}{12}\sqrt{145}+\frac{1}{12}, find the opposite of each term.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
The opposite of -\frac{1}{12}\sqrt{145} is \frac{1}{12}\sqrt{145}.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)=0
To find the opposite of \frac{1}{12}\sqrt{145}+\frac{1}{12}, find the opposite of each term.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)\sqrt{145}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Apply the distributive property by multiplying each term of x+\frac{1}{12}\sqrt{145}-\frac{1}{12} by each term of x-\frac{1}{12}\sqrt{145}-\frac{1}{12}.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply \sqrt{145} and \sqrt{145} to get 145.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Combine x\left(-\frac{1}{12}\right)\sqrt{145} and \frac{1}{12}\sqrt{145}x to get 0.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145}{12}\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply \frac{1}{12} and 145 to get \frac{145}{12}.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145\left(-1\right)}{12\times 12}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply \frac{145}{12} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{-145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Do the multiplications in the fraction \frac{145\left(-1\right)}{12\times 12}.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Fraction \frac{-145}{144} can be rewritten as -\frac{145}{144} by extracting the negative sign.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply \frac{1}{12} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{-1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Do the multiplications in the fraction \frac{1\left(-1\right)}{12\times 12}.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Fraction \frac{-1}{144} can be rewritten as -\frac{1}{144} by extracting the negative sign.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Combine x\left(-\frac{1}{12}\right) and -\frac{1}{12}x to get -\frac{1}{6}x.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{-\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Multiply -\frac{1}{12} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Do the multiplications in the fraction \frac{-\left(-1\right)}{12\times 12}.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Combine -\frac{1}{144}\sqrt{145} and \frac{1}{144}\sqrt{145} to get 0.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{-\left(-1\right)}{12\times 12}=0
Multiply -\frac{1}{12} times -\frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{1}{144}=0
Do the multiplications in the fraction \frac{-\left(-1\right)}{12\times 12}.
x^{2}-\frac{1}{6}x+\frac{-145+1}{144}=0
Since -\frac{145}{144} and \frac{1}{144} have the same denominator, add them by adding their numerators.
x^{2}-\frac{1}{6}x+\frac{-144}{144}=0
Add -145 and 1 to get -144.
x^{2}-\frac{1}{6}x-1=0
Divide -144 by 144 to get -1.
x^{2}-\frac{1}{6}x=1
Add 1 to both sides. Anything plus zero gives itself.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=1+\left(-\frac{1}{12}\right)^{2}
Divide -\frac{1}{6}, the coefficient of the x term, by 2 to get -\frac{1}{12}. Then add the square of -\frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{6}x+\frac{1}{144}=1+\frac{1}{144}
Square -\frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{145}{144}
Add 1 to \frac{1}{144}.
\left(x-\frac{1}{12}\right)^{2}=\frac{145}{144}
Factor x^{2}-\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{145}{144}}
Take the square root of both sides of the equation.
x-\frac{1}{12}=\frac{\sqrt{145}}{12} x-\frac{1}{12}=-\frac{\sqrt{145}}{12}
Simplify.
x=\frac{\sqrt{145}+1}{12} x=\frac{1-\sqrt{145}}{12}
Add \frac{1}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}