Solve for n
n=60x-16.5
Solve for x
x=\frac{n}{60}+0.275
Graph
Share
Copied to clipboard
x=\frac{1}{60}n+0.275
Divide each term of 0.4n+6.6 by 24 to get \frac{1}{60}n+0.275.
\frac{1}{60}n+0.275=x
Swap sides so that all variable terms are on the left hand side.
\frac{1}{60}n=x-0.275
Subtract 0.275 from both sides.
\frac{\frac{1}{60}n}{\frac{1}{60}}=\frac{x-0.275}{\frac{1}{60}}
Multiply both sides by 60.
n=\frac{x-0.275}{\frac{1}{60}}
Dividing by \frac{1}{60} undoes the multiplication by \frac{1}{60}.
n=60x-16.5
Divide x-0.275 by \frac{1}{60} by multiplying x-0.275 by the reciprocal of \frac{1}{60}.
x=\frac{1}{60}n+0.275
Divide each term of 0.4n+6.6 by 24 to get \frac{1}{60}n+0.275.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}