Solve for x
x = \frac{241}{168} = 1\frac{73}{168} \approx 1.43452381
Assign x
x≔\frac{241}{168}
Graph
Share
Copied to clipboard
x=-\frac{3}{28}+\frac{5}{9}+\frac{7}{8}+\frac{1}{9}
Fraction \frac{-3}{28} can be rewritten as -\frac{3}{28} by extracting the negative sign.
x=-\frac{27}{252}+\frac{140}{252}+\frac{7}{8}+\frac{1}{9}
Least common multiple of 28 and 9 is 252. Convert -\frac{3}{28} and \frac{5}{9} to fractions with denominator 252.
x=\frac{-27+140}{252}+\frac{7}{8}+\frac{1}{9}
Since -\frac{27}{252} and \frac{140}{252} have the same denominator, add them by adding their numerators.
x=\frac{113}{252}+\frac{7}{8}+\frac{1}{9}
Add -27 and 140 to get 113.
x=\frac{226}{504}+\frac{441}{504}+\frac{1}{9}
Least common multiple of 252 and 8 is 504. Convert \frac{113}{252} and \frac{7}{8} to fractions with denominator 504.
x=\frac{226+441}{504}+\frac{1}{9}
Since \frac{226}{504} and \frac{441}{504} have the same denominator, add them by adding their numerators.
x=\frac{667}{504}+\frac{1}{9}
Add 226 and 441 to get 667.
x=\frac{667}{504}+\frac{56}{504}
Least common multiple of 504 and 9 is 504. Convert \frac{667}{504} and \frac{1}{9} to fractions with denominator 504.
x=\frac{667+56}{504}
Since \frac{667}{504} and \frac{56}{504} have the same denominator, add them by adding their numerators.
x=\frac{723}{504}
Add 667 and 56 to get 723.
x=\frac{241}{168}
Reduce the fraction \frac{723}{504} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}