Skip to main content
Solve for x
Tick mark Image
Assign x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=\frac{\left(-\left(\frac{100}{75}\right)^{2}\right)\times 88\times \frac{0.75}{1}\times 0.02}{\left(\frac{0.95}{0.75}\right)^{2}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Expand \frac{1}{0.75} by multiplying both numerator and the denominator by 100.
x=\frac{\left(-\left(\frac{4}{3}\right)^{2}\right)\times 88\times \frac{0.75}{1}\times 0.02}{\left(\frac{0.95}{0.75}\right)^{2}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Reduce the fraction \frac{100}{75} to lowest terms by extracting and canceling out 25.
x=\frac{-\frac{16}{9}\times 88\times \frac{0.75}{1}\times 0.02}{\left(\frac{0.95}{0.75}\right)^{2}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
x=\frac{-\frac{1408}{9}\times \frac{0.75}{1}\times 0.02}{\left(\frac{0.95}{0.75}\right)^{2}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Multiply -\frac{16}{9} and 88 to get -\frac{1408}{9}.
x=\frac{-\frac{1408}{9}\times 0.75\times 0.02}{\left(\frac{0.95}{0.75}\right)^{2}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Anything divided by one gives itself.
x=\frac{-\frac{352}{3}\times 0.02}{\left(\frac{0.95}{0.75}\right)^{2}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Multiply -\frac{1408}{9} and 0.75 to get -\frac{352}{3}.
x=\frac{-\frac{176}{75}}{\left(\frac{0.95}{0.75}\right)^{2}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Multiply -\frac{352}{3} and 0.02 to get -\frac{176}{75}.
x=\frac{-\frac{176}{75}}{\left(\frac{95}{75}\right)^{2}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Expand \frac{0.95}{0.75} by multiplying both numerator and the denominator by 100.
x=\frac{-\frac{176}{75}}{\left(\frac{19}{15}\right)^{2}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Reduce the fraction \frac{95}{75} to lowest terms by extracting and canceling out 5.
x=\frac{-\frac{176}{75}}{\frac{361}{225}\times 88+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Calculate \frac{19}{15} to the power of 2 and get \frac{361}{225}.
x=\frac{-\frac{176}{75}}{\frac{31768}{225}+88+\left(\frac{1}{0.75}\right)^{2}\times 88}
Multiply \frac{361}{225} and 88 to get \frac{31768}{225}.
x=\frac{-\frac{176}{75}}{\frac{51568}{225}+\left(\frac{1}{0.75}\right)^{2}\times 88}
Add \frac{31768}{225} and 88 to get \frac{51568}{225}.
x=\frac{-\frac{176}{75}}{\frac{51568}{225}+\left(\frac{100}{75}\right)^{2}\times 88}
Expand \frac{1}{0.75} by multiplying both numerator and the denominator by 100.
x=\frac{-\frac{176}{75}}{\frac{51568}{225}+\left(\frac{4}{3}\right)^{2}\times 88}
Reduce the fraction \frac{100}{75} to lowest terms by extracting and canceling out 25.
x=\frac{-\frac{176}{75}}{\frac{51568}{225}+\frac{16}{9}\times 88}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
x=\frac{-\frac{176}{75}}{\frac{51568}{225}+\frac{1408}{9}}
Multiply \frac{16}{9} and 88 to get \frac{1408}{9}.
x=\frac{-\frac{176}{75}}{\frac{86768}{225}}
Add \frac{51568}{225} and \frac{1408}{9} to get \frac{86768}{225}.
x=-\frac{176}{75}\times \frac{225}{86768}
Divide -\frac{176}{75} by \frac{86768}{225} by multiplying -\frac{176}{75} by the reciprocal of \frac{86768}{225}.
x=-\frac{3}{493}
Multiply -\frac{176}{75} and \frac{225}{86768} to get -\frac{3}{493}.