Solve for x
x=\frac{\sqrt{2}+\sqrt{6}}{4}\approx 0.965925826
Assign x
x≔\frac{\sqrt{2}+\sqrt{6}}{4}
Graph
Share
Copied to clipboard
x=\frac{3^{2}\left(\sqrt{2}\right)^{2}+\left(2\sqrt{3}\right)^{2}-\left(3-\sqrt{3}\right)^{2}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Expand \left(3\sqrt{2}\right)^{2}.
x=\frac{9\left(\sqrt{2}\right)^{2}+\left(2\sqrt{3}\right)^{2}-\left(3-\sqrt{3}\right)^{2}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Calculate 3 to the power of 2 and get 9.
x=\frac{9\times 2+\left(2\sqrt{3}\right)^{2}-\left(3-\sqrt{3}\right)^{2}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
The square of \sqrt{2} is 2.
x=\frac{18+\left(2\sqrt{3}\right)^{2}-\left(3-\sqrt{3}\right)^{2}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Multiply 9 and 2 to get 18.
x=\frac{18+2^{2}\left(\sqrt{3}\right)^{2}-\left(3-\sqrt{3}\right)^{2}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Expand \left(2\sqrt{3}\right)^{2}.
x=\frac{18+4\left(\sqrt{3}\right)^{2}-\left(3-\sqrt{3}\right)^{2}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Calculate 2 to the power of 2 and get 4.
x=\frac{18+4\times 3-\left(3-\sqrt{3}\right)^{2}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
The square of \sqrt{3} is 3.
x=\frac{18+12-\left(3-\sqrt{3}\right)^{2}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Multiply 4 and 3 to get 12.
x=\frac{30-\left(3-\sqrt{3}\right)^{2}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Add 18 and 12 to get 30.
x=\frac{30-\left(9-6\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{3}\right)^{2}.
x=\frac{30-\left(9-6\sqrt{3}+3\right)}{2\times 2\times 3\sqrt{2}\sqrt{3}}
The square of \sqrt{3} is 3.
x=\frac{30-\left(12-6\sqrt{3}\right)}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Add 9 and 3 to get 12.
x=\frac{30-12+6\sqrt{3}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
To find the opposite of 12-6\sqrt{3}, find the opposite of each term.
x=\frac{18+6\sqrt{3}}{2\times 2\times 3\sqrt{2}\sqrt{3}}
Subtract 12 from 30 to get 18.
x=\frac{18+6\sqrt{3}}{4\times 3\sqrt{2}\sqrt{3}}
Multiply 2 and 2 to get 4.
x=\frac{18+6\sqrt{3}}{12\sqrt{2}\sqrt{3}}
Multiply 4 and 3 to get 12.
x=\frac{18+6\sqrt{3}}{12\sqrt{6}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
x=\frac{\left(18+6\sqrt{3}\right)\sqrt{6}}{12\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{18+6\sqrt{3}}{12\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
x=\frac{\left(18+6\sqrt{3}\right)\sqrt{6}}{12\times 6}
The square of \sqrt{6} is 6.
x=\frac{\left(18+6\sqrt{3}\right)\sqrt{6}}{72}
Multiply 12 and 6 to get 72.
x=\frac{18\sqrt{6}+6\sqrt{3}\sqrt{6}}{72}
Use the distributive property to multiply 18+6\sqrt{3} by \sqrt{6}.
x=\frac{18\sqrt{6}+6\sqrt{3}\sqrt{3}\sqrt{2}}{72}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
x=\frac{18\sqrt{6}+6\times 3\sqrt{2}}{72}
Multiply \sqrt{3} and \sqrt{3} to get 3.
x=\frac{18\sqrt{6}+18\sqrt{2}}{72}
Multiply 6 and 3 to get 18.
x=\frac{1}{4}\sqrt{6}+\frac{1}{4}\sqrt{2}
Divide each term of 18\sqrt{6}+18\sqrt{2} by 72 to get \frac{1}{4}\sqrt{6}+\frac{1}{4}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}