Solve for x
x=-\frac{1}{5}+\frac{3}{5}i=-0.2+0.6i
Assign x
x≔-\frac{1}{5}+\frac{3}{5}i
Share
Copied to clipboard
x=\frac{2-5+\left(-2-1\right)i}{-3+6i}
Subtract 5+i from 2-2i by subtracting corresponding real and imaginary parts.
x=\frac{-3-3i}{-3+6i}
Subtract 5 from 2. Subtract 1 from -2.
x=\frac{\left(-3-3i\right)\left(-3-6i\right)}{\left(-3+6i\right)\left(-3-6i\right)}
Multiply both numerator and denominator of \frac{-3-3i}{-3+6i} by the complex conjugate of the denominator, -3-6i.
x=\frac{\left(-3-3i\right)\left(-3-6i\right)}{\left(-3\right)^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{\left(-3-3i\right)\left(-3-6i\right)}{45}
By definition, i^{2} is -1. Calculate the denominator.
x=\frac{-3\left(-3\right)-3\times \left(-6i\right)-3i\left(-3\right)-3\left(-6\right)i^{2}}{45}
Multiply complex numbers -3-3i and -3-6i like you multiply binomials.
x=\frac{-3\left(-3\right)-3\times \left(-6i\right)-3i\left(-3\right)-3\left(-6\right)\left(-1\right)}{45}
By definition, i^{2} is -1.
x=\frac{9+18i+9i-18}{45}
Do the multiplications in -3\left(-3\right)-3\times \left(-6i\right)-3i\left(-3\right)-3\left(-6\right)\left(-1\right).
x=\frac{9-18+\left(18+9\right)i}{45}
Combine the real and imaginary parts in 9+18i+9i-18.
x=\frac{-9+27i}{45}
Do the additions in 9-18+\left(18+9\right)i.
x=-\frac{1}{5}+\frac{3}{5}i
Divide -9+27i by 45 to get -\frac{1}{5}+\frac{3}{5}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}