Skip to main content
Solve for x
Tick mark Image
Assign x
Tick mark Image

Similar Problems from Web Search

Share

x=\frac{2-5+\left(-2-1\right)i}{-3+6i}
Subtract 5+i from 2-2i by subtracting corresponding real and imaginary parts.
x=\frac{-3-3i}{-3+6i}
Subtract 5 from 2. Subtract 1 from -2.
x=\frac{\left(-3-3i\right)\left(-3-6i\right)}{\left(-3+6i\right)\left(-3-6i\right)}
Multiply both numerator and denominator of \frac{-3-3i}{-3+6i} by the complex conjugate of the denominator, -3-6i.
x=\frac{\left(-3-3i\right)\left(-3-6i\right)}{\left(-3\right)^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{\left(-3-3i\right)\left(-3-6i\right)}{45}
By definition, i^{2} is -1. Calculate the denominator.
x=\frac{-3\left(-3\right)-3\times \left(-6i\right)-3i\left(-3\right)-3\left(-6\right)i^{2}}{45}
Multiply complex numbers -3-3i and -3-6i like you multiply binomials.
x=\frac{-3\left(-3\right)-3\times \left(-6i\right)-3i\left(-3\right)-3\left(-6\right)\left(-1\right)}{45}
By definition, i^{2} is -1.
x=\frac{9+18i+9i-18}{45}
Do the multiplications in -3\left(-3\right)-3\times \left(-6i\right)-3i\left(-3\right)-3\left(-6\right)\left(-1\right).
x=\frac{9-18+\left(18+9\right)i}{45}
Combine the real and imaginary parts in 9+18i+9i-18.
x=\frac{-9+27i}{45}
Do the additions in 9-18+\left(18+9\right)i.
x=-\frac{1}{5}+\frac{3}{5}i
Divide -9+27i by 45 to get -\frac{1}{5}+\frac{3}{5}i.