Solve for B_1 (complex solution)
\left\{\begin{matrix}B_{1}=\frac{x^{1-k}}{\alpha }\text{, }&\alpha \neq 0\text{ and }\left(k=0\text{ or }x\neq 0\right)\\B_{1}\in \mathrm{C}\text{, }&\left(k\neq 0\text{ or }\alpha =0\right)\text{ and }x=0\end{matrix}\right.
Solve for B_1
\left\{\begin{matrix}B_{1}=\frac{x^{1-k}}{\alpha }\text{, }&\alpha \neq 0\text{ and }\left(Denominator(k)\text{bmod}2=1\text{ or }x>0\right)\text{ and }x\neq 0\\B_{1}\in \mathrm{R}\text{, }&x=0\text{ and }k>0\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}k=\log_{x}\left(\frac{x}{B_{1}\alpha }\right)+\frac{2\pi n_{1}i}{\ln(x)}\text{, }n_{1}\in \mathrm{Z}\text{, }&B_{1}\alpha \neq 0\text{ and }x\neq 0\text{ and }x\neq 1\\k\in \mathrm{C}\text{, }&\left(x=0\text{ and }B_{1}=0\right)\text{ or }\left(x=0\text{ and }\alpha =0\text{ and }B_{1}\neq 0\right)\text{ or }\left(B_{1}\alpha \neq 0\text{ and }x=0\right)\text{ or }\left(x=1\text{ and }\alpha =\frac{1}{B_{1}}\text{ and }B_{1}\neq 0\right)\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\log_{x}\left(\frac{x}{B_{1}\alpha }\right)\text{, }&B_{1}\alpha \neq 0\text{ and }x>0\text{ and }\left(\alpha >0\text{ or }B_{1}<0\right)\text{ and }\left(B_{1}>0\text{ or }\alpha <0\right)\text{ and }x\neq 1\\k\in \mathrm{R}\text{, }&|x|=1\text{ and }\alpha =\frac{1}{B_{1}}\text{ and }\left(Denominator(k)\text{bmod}2=1\text{ or }x=1\right)\text{ and }\left(Numerator(k)\text{bmod}2=1\text{ or }x=1\right)\text{ and }B_{1}\neq 0\\k>0\text{, }&\left(x=0\text{ and }B_{1}=0\right)\text{ or }\left(B_{1}\neq 0\text{ and }x=0\text{ and }\alpha =0\right)\text{ or }\left(B_{1}\alpha \neq 0\text{ and }x=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
\alpha B_{1}x^{k}=x
Swap sides so that all variable terms are on the left hand side.
\alpha x^{k}B_{1}=x
The equation is in standard form.
\frac{\alpha x^{k}B_{1}}{\alpha x^{k}}=\frac{x}{\alpha x^{k}}
Divide both sides by \alpha x^{k}.
B_{1}=\frac{x}{\alpha x^{k}}
Dividing by \alpha x^{k} undoes the multiplication by \alpha x^{k}.
B_{1}=\frac{x^{1-k}}{\alpha }
Divide x by \alpha x^{k}.
\alpha B_{1}x^{k}=x
Swap sides so that all variable terms are on the left hand side.
\alpha x^{k}B_{1}=x
The equation is in standard form.
\frac{\alpha x^{k}B_{1}}{\alpha x^{k}}=\frac{x}{\alpha x^{k}}
Divide both sides by \alpha x^{k}.
B_{1}=\frac{x}{\alpha x^{k}}
Dividing by \alpha x^{k} undoes the multiplication by \alpha x^{k}.
B_{1}=\frac{x^{1-k}}{\alpha }
Divide x by \alpha x^{k}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}