Solve for x
x=8\sqrt{110}-80\approx 3.904707854
x=-8\sqrt{110}-80\approx -163.904707854
Graph
Share
Copied to clipboard
x+\frac{1}{160}x^{2}=4
Add \frac{1}{160}x^{2} to both sides.
x+\frac{1}{160}x^{2}-4=0
Subtract 4 from both sides.
\frac{1}{160}x^{2}+x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{160}\left(-4\right)}}{2\times \frac{1}{160}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{160} for a, 1 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{160}\left(-4\right)}}{2\times \frac{1}{160}}
Square 1.
x=\frac{-1±\sqrt{1-\frac{1}{40}\left(-4\right)}}{2\times \frac{1}{160}}
Multiply -4 times \frac{1}{160}.
x=\frac{-1±\sqrt{1+\frac{1}{10}}}{2\times \frac{1}{160}}
Multiply -\frac{1}{40} times -4.
x=\frac{-1±\sqrt{\frac{11}{10}}}{2\times \frac{1}{160}}
Add 1 to \frac{1}{10}.
x=\frac{-1±\frac{\sqrt{110}}{10}}{2\times \frac{1}{160}}
Take the square root of \frac{11}{10}.
x=\frac{-1±\frac{\sqrt{110}}{10}}{\frac{1}{80}}
Multiply 2 times \frac{1}{160}.
x=\frac{\frac{\sqrt{110}}{10}-1}{\frac{1}{80}}
Now solve the equation x=\frac{-1±\frac{\sqrt{110}}{10}}{\frac{1}{80}} when ± is plus. Add -1 to \frac{\sqrt{110}}{10}.
x=8\sqrt{110}-80
Divide -1+\frac{\sqrt{110}}{10} by \frac{1}{80} by multiplying -1+\frac{\sqrt{110}}{10} by the reciprocal of \frac{1}{80}.
x=\frac{-\frac{\sqrt{110}}{10}-1}{\frac{1}{80}}
Now solve the equation x=\frac{-1±\frac{\sqrt{110}}{10}}{\frac{1}{80}} when ± is minus. Subtract \frac{\sqrt{110}}{10} from -1.
x=-8\sqrt{110}-80
Divide -1-\frac{\sqrt{110}}{10} by \frac{1}{80} by multiplying -1-\frac{\sqrt{110}}{10} by the reciprocal of \frac{1}{80}.
x=8\sqrt{110}-80 x=-8\sqrt{110}-80
The equation is now solved.
x+\frac{1}{160}x^{2}=4
Add \frac{1}{160}x^{2} to both sides.
\frac{1}{160}x^{2}+x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{160}x^{2}+x}{\frac{1}{160}}=\frac{4}{\frac{1}{160}}
Multiply both sides by 160.
x^{2}+\frac{1}{\frac{1}{160}}x=\frac{4}{\frac{1}{160}}
Dividing by \frac{1}{160} undoes the multiplication by \frac{1}{160}.
x^{2}+160x=\frac{4}{\frac{1}{160}}
Divide 1 by \frac{1}{160} by multiplying 1 by the reciprocal of \frac{1}{160}.
x^{2}+160x=640
Divide 4 by \frac{1}{160} by multiplying 4 by the reciprocal of \frac{1}{160}.
x^{2}+160x+80^{2}=640+80^{2}
Divide 160, the coefficient of the x term, by 2 to get 80. Then add the square of 80 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+160x+6400=640+6400
Square 80.
x^{2}+160x+6400=7040
Add 640 to 6400.
\left(x+80\right)^{2}=7040
Factor x^{2}+160x+6400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+80\right)^{2}}=\sqrt{7040}
Take the square root of both sides of the equation.
x+80=8\sqrt{110} x+80=-8\sqrt{110}
Simplify.
x=8\sqrt{110}-80 x=-8\sqrt{110}-80
Subtract 80 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}