Solve for x (complex solution)
x=\frac{-\sqrt{4319}i+1}{360}\approx 0.002777778-0.182553053i
x=\frac{1+\sqrt{4319}i}{360}\approx 0.002777778+0.182553053i
Graph
Share
Copied to clipboard
x=\left(-2\right)^{2}x^{2}\left(3+3\times 7\times 2\right)+3\times 2
Expand \left(-2x\right)^{2}.
x=4x^{2}\left(3+3\times 7\times 2\right)+3\times 2
Calculate -2 to the power of 2 and get 4.
x=4x^{2}\left(3+21\times 2\right)+3\times 2
Multiply 3 and 7 to get 21.
x=4x^{2}\left(3+42\right)+3\times 2
Multiply 21 and 2 to get 42.
x=4x^{2}\times 45+3\times 2
Add 3 and 42 to get 45.
x=180x^{2}+3\times 2
Multiply 4 and 45 to get 180.
x=180x^{2}+6
Multiply 3 and 2 to get 6.
x-180x^{2}=6
Subtract 180x^{2} from both sides.
x-180x^{2}-6=0
Subtract 6 from both sides.
-180x^{2}+x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-180\right)\left(-6\right)}}{2\left(-180\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -180 for a, 1 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-180\right)\left(-6\right)}}{2\left(-180\right)}
Square 1.
x=\frac{-1±\sqrt{1+720\left(-6\right)}}{2\left(-180\right)}
Multiply -4 times -180.
x=\frac{-1±\sqrt{1-4320}}{2\left(-180\right)}
Multiply 720 times -6.
x=\frac{-1±\sqrt{-4319}}{2\left(-180\right)}
Add 1 to -4320.
x=\frac{-1±\sqrt{4319}i}{2\left(-180\right)}
Take the square root of -4319.
x=\frac{-1±\sqrt{4319}i}{-360}
Multiply 2 times -180.
x=\frac{-1+\sqrt{4319}i}{-360}
Now solve the equation x=\frac{-1±\sqrt{4319}i}{-360} when ± is plus. Add -1 to i\sqrt{4319}.
x=\frac{-\sqrt{4319}i+1}{360}
Divide -1+i\sqrt{4319} by -360.
x=\frac{-\sqrt{4319}i-1}{-360}
Now solve the equation x=\frac{-1±\sqrt{4319}i}{-360} when ± is minus. Subtract i\sqrt{4319} from -1.
x=\frac{1+\sqrt{4319}i}{360}
Divide -1-i\sqrt{4319} by -360.
x=\frac{-\sqrt{4319}i+1}{360} x=\frac{1+\sqrt{4319}i}{360}
The equation is now solved.
x=\left(-2\right)^{2}x^{2}\left(3+3\times 7\times 2\right)+3\times 2
Expand \left(-2x\right)^{2}.
x=4x^{2}\left(3+3\times 7\times 2\right)+3\times 2
Calculate -2 to the power of 2 and get 4.
x=4x^{2}\left(3+21\times 2\right)+3\times 2
Multiply 3 and 7 to get 21.
x=4x^{2}\left(3+42\right)+3\times 2
Multiply 21 and 2 to get 42.
x=4x^{2}\times 45+3\times 2
Add 3 and 42 to get 45.
x=180x^{2}+3\times 2
Multiply 4 and 45 to get 180.
x=180x^{2}+6
Multiply 3 and 2 to get 6.
x-180x^{2}=6
Subtract 180x^{2} from both sides.
-180x^{2}+x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-180x^{2}+x}{-180}=\frac{6}{-180}
Divide both sides by -180.
x^{2}+\frac{1}{-180}x=\frac{6}{-180}
Dividing by -180 undoes the multiplication by -180.
x^{2}-\frac{1}{180}x=\frac{6}{-180}
Divide 1 by -180.
x^{2}-\frac{1}{180}x=-\frac{1}{30}
Reduce the fraction \frac{6}{-180} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{1}{180}x+\left(-\frac{1}{360}\right)^{2}=-\frac{1}{30}+\left(-\frac{1}{360}\right)^{2}
Divide -\frac{1}{180}, the coefficient of the x term, by 2 to get -\frac{1}{360}. Then add the square of -\frac{1}{360} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{180}x+\frac{1}{129600}=-\frac{1}{30}+\frac{1}{129600}
Square -\frac{1}{360} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{180}x+\frac{1}{129600}=-\frac{4319}{129600}
Add -\frac{1}{30} to \frac{1}{129600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{360}\right)^{2}=-\frac{4319}{129600}
Factor x^{2}-\frac{1}{180}x+\frac{1}{129600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{360}\right)^{2}}=\sqrt{-\frac{4319}{129600}}
Take the square root of both sides of the equation.
x-\frac{1}{360}=\frac{\sqrt{4319}i}{360} x-\frac{1}{360}=-\frac{\sqrt{4319}i}{360}
Simplify.
x=\frac{1+\sqrt{4319}i}{360} x=\frac{-\sqrt{4319}i+1}{360}
Add \frac{1}{360} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}