Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\sqrt{x+3+7}\right)^{2}
Square both sides of the equation.
x^{2}=\left(\sqrt{x+10}\right)^{2}
Add 3 and 7 to get 10.
x^{2}=x+10
Calculate \sqrt{x+10} to the power of 2 and get x+10.
x^{2}-x=10
Subtract x from both sides.
x^{2}-x-10=0
Subtract 10 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-10\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+40}}{2}
Multiply -4 times -10.
x=\frac{-\left(-1\right)±\sqrt{41}}{2}
Add 1 to 40.
x=\frac{1±\sqrt{41}}{2}
The opposite of -1 is 1.
x=\frac{\sqrt{41}+1}{2}
Now solve the equation x=\frac{1±\sqrt{41}}{2} when ± is plus. Add 1 to \sqrt{41}.
x=\frac{1-\sqrt{41}}{2}
Now solve the equation x=\frac{1±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from 1.
x=\frac{\sqrt{41}+1}{2} x=\frac{1-\sqrt{41}}{2}
The equation is now solved.
\frac{\sqrt{41}+1}{2}=\sqrt{\frac{\sqrt{41}+1}{2}+3+7}
Substitute \frac{\sqrt{41}+1}{2} for x in the equation x=\sqrt{x+3+7}.
\frac{1}{2}\times 41^{\frac{1}{2}}+\frac{1}{2}=\frac{1}{2}+\frac{1}{2}\times 41^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{41}+1}{2} satisfies the equation.
\frac{1-\sqrt{41}}{2}=\sqrt{\frac{1-\sqrt{41}}{2}+3+7}
Substitute \frac{1-\sqrt{41}}{2} for x in the equation x=\sqrt{x+3+7}.
\frac{1}{2}-\frac{1}{2}\times 41^{\frac{1}{2}}=-\left(\frac{1}{2}-\frac{1}{2}\times 41^{\frac{1}{2}}\right)
Simplify. The value x=\frac{1-\sqrt{41}}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{41}+1}{2}
Equation x=\sqrt{x+10} has a unique solution.