Solve for x
x = \frac{\sqrt{706} - 20}{2} \approx 3.285330256
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{76.5-4\times 5x}\right)^{2}
Square both sides of the equation.
x^{2}=\left(\sqrt{76.5-20x}\right)^{2}
Multiply 4 and 5 to get 20.
x^{2}=76.5-20x
Calculate \sqrt{76.5-20x} to the power of 2 and get 76.5-20x.
x^{2}-76.5=-20x
Subtract 76.5 from both sides.
x^{2}-76.5+20x=0
Add 20x to both sides.
x^{2}+20x-76.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-76.5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 20 for b, and -76.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-76.5\right)}}{2}
Square 20.
x=\frac{-20±\sqrt{400+306}}{2}
Multiply -4 times -76.5.
x=\frac{-20±\sqrt{706}}{2}
Add 400 to 306.
x=\frac{\sqrt{706}-20}{2}
Now solve the equation x=\frac{-20±\sqrt{706}}{2} when ± is plus. Add -20 to \sqrt{706}.
x=\frac{\sqrt{706}}{2}-10
Divide -20+\sqrt{706} by 2.
x=\frac{-\sqrt{706}-20}{2}
Now solve the equation x=\frac{-20±\sqrt{706}}{2} when ± is minus. Subtract \sqrt{706} from -20.
x=-\frac{\sqrt{706}}{2}-10
Divide -20-\sqrt{706} by 2.
x=\frac{\sqrt{706}}{2}-10 x=-\frac{\sqrt{706}}{2}-10
The equation is now solved.
\frac{\sqrt{706}}{2}-10=\sqrt{76.5-4\times 5\left(\frac{\sqrt{706}}{2}-10\right)}
Substitute \frac{\sqrt{706}}{2}-10 for x in the equation x=\sqrt{76.5-4\times 5x}.
-10+\frac{1}{2}\times 706^{\frac{1}{2}}=\frac{1}{2}\times 706^{\frac{1}{2}}-10
Simplify. The value x=\frac{\sqrt{706}}{2}-10 satisfies the equation.
-\frac{\sqrt{706}}{2}-10=\sqrt{76.5-4\times 5\left(-\frac{\sqrt{706}}{2}-10\right)}
Substitute -\frac{\sqrt{706}}{2}-10 for x in the equation x=\sqrt{76.5-4\times 5x}.
-\frac{1}{2}\times 706^{\frac{1}{2}}-10=\frac{1}{2}\times 706^{\frac{1}{2}}+10
Simplify. The value x=-\frac{\sqrt{706}}{2}-10 does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{706}}{2}-10
Equation x=\sqrt{76.5-20x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}