Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\sqrt{76.5-4\times 5x}\right)^{2}
Square both sides of the equation.
x^{2}=\left(\sqrt{76.5-20x}\right)^{2}
Multiply 4 and 5 to get 20.
x^{2}=76.5-20x
Calculate \sqrt{76.5-20x} to the power of 2 and get 76.5-20x.
x^{2}-76.5=-20x
Subtract 76.5 from both sides.
x^{2}-76.5+20x=0
Add 20x to both sides.
x^{2}+20x-76.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-76.5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 20 for b, and -76.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-76.5\right)}}{2}
Square 20.
x=\frac{-20±\sqrt{400+306}}{2}
Multiply -4 times -76.5.
x=\frac{-20±\sqrt{706}}{2}
Add 400 to 306.
x=\frac{\sqrt{706}-20}{2}
Now solve the equation x=\frac{-20±\sqrt{706}}{2} when ± is plus. Add -20 to \sqrt{706}.
x=\frac{\sqrt{706}}{2}-10
Divide -20+\sqrt{706} by 2.
x=\frac{-\sqrt{706}-20}{2}
Now solve the equation x=\frac{-20±\sqrt{706}}{2} when ± is minus. Subtract \sqrt{706} from -20.
x=-\frac{\sqrt{706}}{2}-10
Divide -20-\sqrt{706} by 2.
x=\frac{\sqrt{706}}{2}-10 x=-\frac{\sqrt{706}}{2}-10
The equation is now solved.
\frac{\sqrt{706}}{2}-10=\sqrt{76.5-4\times 5\left(\frac{\sqrt{706}}{2}-10\right)}
Substitute \frac{\sqrt{706}}{2}-10 for x in the equation x=\sqrt{76.5-4\times 5x}.
-10+\frac{1}{2}\times 706^{\frac{1}{2}}=\frac{1}{2}\times 706^{\frac{1}{2}}-10
Simplify. The value x=\frac{\sqrt{706}}{2}-10 satisfies the equation.
-\frac{\sqrt{706}}{2}-10=\sqrt{76.5-4\times 5\left(-\frac{\sqrt{706}}{2}-10\right)}
Substitute -\frac{\sqrt{706}}{2}-10 for x in the equation x=\sqrt{76.5-4\times 5x}.
-\frac{1}{2}\times 706^{\frac{1}{2}}-10=\frac{1}{2}\times 706^{\frac{1}{2}}+10
Simplify. The value x=-\frac{\sqrt{706}}{2}-10 does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{706}}{2}-10
Equation x=\sqrt{76.5-20x} has a unique solution.