Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{\frac{8-2x}{3}}\right)^{2}
Square both sides of the equation.
x^{2}=\frac{8-2x}{3}
Calculate \sqrt{\frac{8-2x}{3}} to the power of 2 and get \frac{8-2x}{3}.
x^{2}=\frac{8}{3}-\frac{2}{3}x
Divide each term of 8-2x by 3 to get \frac{8}{3}-\frac{2}{3}x.
x^{2}-\frac{8}{3}=-\frac{2}{3}x
Subtract \frac{8}{3} from both sides.
x^{2}-\frac{8}{3}+\frac{2}{3}x=0
Add \frac{2}{3}x to both sides.
x^{2}+\frac{2}{3}x-\frac{8}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-\frac{8}{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{2}{3} for b, and -\frac{8}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-\frac{8}{3}\right)}}{2}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+\frac{32}{3}}}{2}
Multiply -4 times -\frac{8}{3}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{100}{9}}}{2}
Add \frac{4}{9} to \frac{32}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{2}{3}±\frac{10}{3}}{2}
Take the square root of \frac{100}{9}.
x=\frac{\frac{8}{3}}{2}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{10}{3}}{2} when ± is plus. Add -\frac{2}{3} to \frac{10}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{4}{3}
Divide \frac{8}{3} by 2.
x=-\frac{4}{2}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{10}{3}}{2} when ± is minus. Subtract \frac{10}{3} from -\frac{2}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-2
Divide -4 by 2.
x=\frac{4}{3} x=-2
The equation is now solved.
\frac{4}{3}=\sqrt{\frac{8-2\times \frac{4}{3}}{3}}
Substitute \frac{4}{3} for x in the equation x=\sqrt{\frac{8-2x}{3}}.
\frac{4}{3}=\frac{4}{3}
Simplify. The value x=\frac{4}{3} satisfies the equation.
-2=\sqrt{\frac{8-2\left(-2\right)}{3}}
Substitute -2 for x in the equation x=\sqrt{\frac{8-2x}{3}}.
-2=2
Simplify. The value x=-2 does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{4}{3}
Equation x=\sqrt{\frac{8-2x}{3}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}