Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=\frac{60+\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{3}}
Rationalize the denominator of \frac{x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
x=\frac{60+\frac{x\sqrt{3}}{3}}{\sqrt{3}}
The square of \sqrt{3} is 3.
x=\frac{\left(60+\frac{x\sqrt{3}}{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{60+\frac{x\sqrt{3}}{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
x=\frac{\left(60+\frac{x\sqrt{3}}{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
x=\frac{60\sqrt{3}+\frac{x\sqrt{3}}{3}\sqrt{3}}{3}
Use the distributive property to multiply 60+\frac{x\sqrt{3}}{3} by \sqrt{3}.
x=\frac{60\sqrt{3}+\frac{x\sqrt{3}\sqrt{3}}{3}}{3}
Express \frac{x\sqrt{3}}{3}\sqrt{3} as a single fraction.
x=\frac{60\sqrt{3}+\frac{x\times 3}{3}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
x=\frac{60\sqrt{3}+x}{3}
Cancel out 3 and 3.
x=20\sqrt{3}+\frac{1}{3}x
Divide each term of 60\sqrt{3}+x by 3 to get 20\sqrt{3}+\frac{1}{3}x.
x-\frac{1}{3}x=20\sqrt{3}
Subtract \frac{1}{3}x from both sides.
\frac{2}{3}x=20\sqrt{3}
Combine x and -\frac{1}{3}x to get \frac{2}{3}x.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{20\sqrt{3}}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{20\sqrt{3}}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
x=30\sqrt{3}
Divide 20\sqrt{3} by \frac{2}{3} by multiplying 20\sqrt{3} by the reciprocal of \frac{2}{3}.