Solve for x
x=30\sqrt{3}\approx 51.961524227
Graph
Share
Copied to clipboard
x=\frac{60+\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{3}}
Rationalize the denominator of \frac{x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
x=\frac{60+\frac{x\sqrt{3}}{3}}{\sqrt{3}}
The square of \sqrt{3} is 3.
x=\frac{\left(60+\frac{x\sqrt{3}}{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{60+\frac{x\sqrt{3}}{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
x=\frac{\left(60+\frac{x\sqrt{3}}{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
x=\frac{60\sqrt{3}+\frac{x\sqrt{3}}{3}\sqrt{3}}{3}
Use the distributive property to multiply 60+\frac{x\sqrt{3}}{3} by \sqrt{3}.
x=\frac{60\sqrt{3}+\frac{x\sqrt{3}\sqrt{3}}{3}}{3}
Express \frac{x\sqrt{3}}{3}\sqrt{3} as a single fraction.
x=\frac{60\sqrt{3}+\frac{x\times 3}{3}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
x=\frac{60\sqrt{3}+x}{3}
Cancel out 3 and 3.
x=20\sqrt{3}+\frac{1}{3}x
Divide each term of 60\sqrt{3}+x by 3 to get 20\sqrt{3}+\frac{1}{3}x.
x-\frac{1}{3}x=20\sqrt{3}
Subtract \frac{1}{3}x from both sides.
\frac{2}{3}x=20\sqrt{3}
Combine x and -\frac{1}{3}x to get \frac{2}{3}x.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{20\sqrt{3}}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{20\sqrt{3}}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
x=30\sqrt{3}
Divide 20\sqrt{3} by \frac{2}{3} by multiplying 20\sqrt{3} by the reciprocal of \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}