Solve for y
y=-\frac{x+2}{2x+3}
x\neq -\frac{3}{2}
Solve for x
x=-\frac{3y+2}{2y+1}
y\neq -\frac{1}{2}
Graph
Share
Copied to clipboard
x\left(2y+1\right)=-3y-2
Variable y cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2y+1.
2xy+x=-3y-2
Use the distributive property to multiply x by 2y+1.
2xy+x+3y=-2
Add 3y to both sides.
2xy+3y=-2-x
Subtract x from both sides.
\left(2x+3\right)y=-2-x
Combine all terms containing y.
\left(2x+3\right)y=-x-2
The equation is in standard form.
\frac{\left(2x+3\right)y}{2x+3}=\frac{-x-2}{2x+3}
Divide both sides by 2x+3.
y=\frac{-x-2}{2x+3}
Dividing by 2x+3 undoes the multiplication by 2x+3.
y=-\frac{x+2}{2x+3}
Divide -2-x by 2x+3.
y=-\frac{x+2}{2x+3}\text{, }y\neq -\frac{1}{2}
Variable y cannot be equal to -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}