Solve for x
x=\frac{\sqrt{2}}{2}\approx 0.707106781
Assign x
x≔\frac{\sqrt{2}}{2}
Graph
Share
Copied to clipboard
x=\frac{3^{2}\left(\sqrt{2}\right)^{2}+\left(3-\sqrt{3}\right)^{2}-\left(2\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Expand \left(3\sqrt{2}\right)^{2}.
x=\frac{9\left(\sqrt{2}\right)^{2}+\left(3-\sqrt{3}\right)^{2}-\left(2\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Calculate 3 to the power of 2 and get 9.
x=\frac{9\times 2+\left(3-\sqrt{3}\right)^{2}-\left(2\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
The square of \sqrt{2} is 2.
x=\frac{18+\left(3-\sqrt{3}\right)^{2}-\left(2\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Multiply 9 and 2 to get 18.
x=\frac{18+9-6\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(2\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{3}\right)^{2}.
x=\frac{18+9-6\sqrt{3}+3-\left(2\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
The square of \sqrt{3} is 3.
x=\frac{18+12-6\sqrt{3}-\left(2\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Add 9 and 3 to get 12.
x=\frac{30-6\sqrt{3}-\left(2\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Add 18 and 12 to get 30.
x=\frac{30-6\sqrt{3}-2^{2}\left(\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Expand \left(2\sqrt{3}\right)^{2}.
x=\frac{30-6\sqrt{3}-4\left(\sqrt{3}\right)^{2}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Calculate 2 to the power of 2 and get 4.
x=\frac{30-6\sqrt{3}-4\times 3}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
The square of \sqrt{3} is 3.
x=\frac{30-6\sqrt{3}-12}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Multiply 4 and 3 to get 12.
x=\frac{18-6\sqrt{3}}{2\times 3\sqrt{2}\left(3-\sqrt{3}\right)}
Subtract 12 from 30 to get 18.
x=\frac{18-6\sqrt{3}}{6\sqrt{2}\left(3-\sqrt{3}\right)}
Multiply 2 and 3 to get 6.
x=\frac{\left(18-6\sqrt{3}\right)\sqrt{2}}{6\left(\sqrt{2}\right)^{2}\left(3-\sqrt{3}\right)}
Rationalize the denominator of \frac{18-6\sqrt{3}}{6\sqrt{2}\left(3-\sqrt{3}\right)} by multiplying numerator and denominator by \sqrt{2}.
x=\frac{\left(18-6\sqrt{3}\right)\sqrt{2}}{6\times 2\left(3-\sqrt{3}\right)}
The square of \sqrt{2} is 2.
x=\frac{\left(18-6\sqrt{3}\right)\sqrt{2}}{12\left(3-\sqrt{3}\right)}
Multiply 6 and 2 to get 12.
x=\frac{18\sqrt{2}-6\sqrt{3}\sqrt{2}}{12\left(3-\sqrt{3}\right)}
Use the distributive property to multiply 18-6\sqrt{3} by \sqrt{2}.
x=\frac{18\sqrt{2}-6\sqrt{6}}{12\left(3-\sqrt{3}\right)}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
x=\frac{18\sqrt{2}-6\sqrt{6}}{36-12\sqrt{3}}
Use the distributive property to multiply 12 by 3-\sqrt{3}.
x=\frac{\left(18\sqrt{2}-6\sqrt{6}\right)\left(36+12\sqrt{3}\right)}{\left(36-12\sqrt{3}\right)\left(36+12\sqrt{3}\right)}
Rationalize the denominator of \frac{18\sqrt{2}-6\sqrt{6}}{36-12\sqrt{3}} by multiplying numerator and denominator by 36+12\sqrt{3}.
x=\frac{\left(18\sqrt{2}-6\sqrt{6}\right)\left(36+12\sqrt{3}\right)}{36^{2}-\left(-12\sqrt{3}\right)^{2}}
Consider \left(36-12\sqrt{3}\right)\left(36+12\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{\left(18\sqrt{2}-6\sqrt{6}\right)\left(36+12\sqrt{3}\right)}{1296-\left(-12\sqrt{3}\right)^{2}}
Calculate 36 to the power of 2 and get 1296.
x=\frac{\left(18\sqrt{2}-6\sqrt{6}\right)\left(36+12\sqrt{3}\right)}{1296-\left(-12\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-12\sqrt{3}\right)^{2}.
x=\frac{\left(18\sqrt{2}-6\sqrt{6}\right)\left(36+12\sqrt{3}\right)}{1296-144\left(\sqrt{3}\right)^{2}}
Calculate -12 to the power of 2 and get 144.
x=\frac{\left(18\sqrt{2}-6\sqrt{6}\right)\left(36+12\sqrt{3}\right)}{1296-144\times 3}
The square of \sqrt{3} is 3.
x=\frac{\left(18\sqrt{2}-6\sqrt{6}\right)\left(36+12\sqrt{3}\right)}{1296-432}
Multiply 144 and 3 to get 432.
x=\frac{\left(18\sqrt{2}-6\sqrt{6}\right)\left(36+12\sqrt{3}\right)}{864}
Subtract 432 from 1296 to get 864.
x=\frac{648\sqrt{2}+216\sqrt{3}\sqrt{2}-216\sqrt{6}-72\sqrt{3}\sqrt{6}}{864}
Use the distributive property to multiply 18\sqrt{2}-6\sqrt{6} by 36+12\sqrt{3}.
x=\frac{648\sqrt{2}+216\sqrt{6}-216\sqrt{6}-72\sqrt{3}\sqrt{6}}{864}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
x=\frac{648\sqrt{2}-72\sqrt{3}\sqrt{6}}{864}
Combine 216\sqrt{6} and -216\sqrt{6} to get 0.
x=\frac{648\sqrt{2}-72\sqrt{3}\sqrt{3}\sqrt{2}}{864}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
x=\frac{648\sqrt{2}-72\times 3\sqrt{2}}{864}
Multiply \sqrt{3} and \sqrt{3} to get 3.
x=\frac{648\sqrt{2}-216\sqrt{2}}{864}
Multiply -72 and 3 to get -216.
x=\frac{432\sqrt{2}}{864}
Combine 648\sqrt{2} and -216\sqrt{2} to get 432\sqrt{2}.
x=\frac{1}{2}\sqrt{2}
Divide 432\sqrt{2} by 864 to get \frac{1}{2}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}