Solve for y
y=2x^{2}+1
x\geq 0
Solve for y (complex solution)
y=2x^{2}+1
arg(x)<\pi \text{ or }x=0
Solve for x
x=\frac{\sqrt{2\left(y-1\right)}}{2}
y\geq 1
Graph
Share
Copied to clipboard
x=\frac{\sqrt{2y-2}}{2}
Use the distributive property to multiply 2 by y-1.
\frac{\sqrt{2y-2}}{2}=x
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{1}{2}\sqrt{2y-2}}{\frac{1}{2}}=\frac{x}{\frac{1}{2}}
Multiply both sides by 2.
\sqrt{2y-2}=\frac{x}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
\sqrt{2y-2}=2x
Divide x by \frac{1}{2} by multiplying x by the reciprocal of \frac{1}{2}.
2y-2=4x^{2}
Square both sides of the equation.
2y-2-\left(-2\right)=4x^{2}-\left(-2\right)
Add 2 to both sides of the equation.
2y=4x^{2}-\left(-2\right)
Subtracting -2 from itself leaves 0.
2y=4x^{2}+2
Subtract -2 from 4x^{2}.
\frac{2y}{2}=\frac{4x^{2}+2}{2}
Divide both sides by 2.
y=\frac{4x^{2}+2}{2}
Dividing by 2 undoes the multiplication by 2.
y=2x^{2}+1
Divide 4x^{2}+2 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}