x : 0,04 \div 24 : 0,4
Evaluate
\frac{125x}{48}
Differentiate w.r.t. x
\frac{125}{48} = 2\frac{29}{48} = 2.6041666666666665
Graph
Share
Copied to clipboard
\frac{\frac{x}{0,04}}{24\times 0,4}
Express \frac{\frac{\frac{x}{0,04}}{24}}{0,4} as a single fraction.
\frac{\frac{x}{0,04}}{9,6}
Multiply 24 and 0,4 to get 9,6.
\frac{x}{0,04\times 9,6}
Express \frac{\frac{x}{0,04}}{9,6} as a single fraction.
\frac{x}{0,384}
Multiply 0,04 and 9,6 to get 0,384.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{0,04}}{24\times 0,4})
Express \frac{\frac{\frac{x}{0,04}}{24}}{0,4} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{0,04}}{9,6})
Multiply 24 and 0,4 to get 9,6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{0,04\times 9,6})
Express \frac{\frac{x}{0,04}}{9,6} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{0,384})
Multiply 0,04 and 9,6 to get 0,384.
\frac{125}{48}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{125}{48}x^{0}
Subtract 1 from 1.
\frac{125}{48}\times 1
For any term t except 0, t^{0}=1.
\frac{125}{48}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}