Solve for x
x = \frac{16}{3} = 5\frac{1}{3} \approx 5.333333333
Graph
Share
Copied to clipboard
\frac{x}{\frac{30}{3}+\frac{7}{3}}=\frac{\frac{4}{9}+\frac{2}{3}-\frac{2}{5}}{1-\frac{2}{15}+\frac{7}{9}}
Convert 10 to fraction \frac{30}{3}.
\frac{x}{\frac{30+7}{3}}=\frac{\frac{4}{9}+\frac{2}{3}-\frac{2}{5}}{1-\frac{2}{15}+\frac{7}{9}}
Since \frac{30}{3} and \frac{7}{3} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{37}{3}}=\frac{\frac{4}{9}+\frac{2}{3}-\frac{2}{5}}{1-\frac{2}{15}+\frac{7}{9}}
Add 30 and 7 to get 37.
\frac{x}{\frac{37}{3}}=\frac{\frac{4}{9}+\frac{6}{9}-\frac{2}{5}}{1-\frac{2}{15}+\frac{7}{9}}
Least common multiple of 9 and 3 is 9. Convert \frac{4}{9} and \frac{2}{3} to fractions with denominator 9.
\frac{x}{\frac{37}{3}}=\frac{\frac{4+6}{9}-\frac{2}{5}}{1-\frac{2}{15}+\frac{7}{9}}
Since \frac{4}{9} and \frac{6}{9} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{37}{3}}=\frac{\frac{10}{9}-\frac{2}{5}}{1-\frac{2}{15}+\frac{7}{9}}
Add 4 and 6 to get 10.
\frac{x}{\frac{37}{3}}=\frac{\frac{50}{45}-\frac{18}{45}}{1-\frac{2}{15}+\frac{7}{9}}
Least common multiple of 9 and 5 is 45. Convert \frac{10}{9} and \frac{2}{5} to fractions with denominator 45.
\frac{x}{\frac{37}{3}}=\frac{\frac{50-18}{45}}{1-\frac{2}{15}+\frac{7}{9}}
Since \frac{50}{45} and \frac{18}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{\frac{37}{3}}=\frac{\frac{32}{45}}{1-\frac{2}{15}+\frac{7}{9}}
Subtract 18 from 50 to get 32.
\frac{x}{\frac{37}{3}}=\frac{\frac{32}{45}}{\frac{15}{15}-\frac{2}{15}+\frac{7}{9}}
Convert 1 to fraction \frac{15}{15}.
\frac{x}{\frac{37}{3}}=\frac{\frac{32}{45}}{\frac{15-2}{15}+\frac{7}{9}}
Since \frac{15}{15} and \frac{2}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{\frac{37}{3}}=\frac{\frac{32}{45}}{\frac{13}{15}+\frac{7}{9}}
Subtract 2 from 15 to get 13.
\frac{x}{\frac{37}{3}}=\frac{\frac{32}{45}}{\frac{39}{45}+\frac{35}{45}}
Least common multiple of 15 and 9 is 45. Convert \frac{13}{15} and \frac{7}{9} to fractions with denominator 45.
\frac{x}{\frac{37}{3}}=\frac{\frac{32}{45}}{\frac{39+35}{45}}
Since \frac{39}{45} and \frac{35}{45} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{37}{3}}=\frac{\frac{32}{45}}{\frac{74}{45}}
Add 39 and 35 to get 74.
\frac{x}{\frac{37}{3}}=\frac{32}{45}\times \frac{45}{74}
Divide \frac{32}{45} by \frac{74}{45} by multiplying \frac{32}{45} by the reciprocal of \frac{74}{45}.
\frac{x}{\frac{37}{3}}=\frac{32\times 45}{45\times 74}
Multiply \frac{32}{45} times \frac{45}{74} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\frac{37}{3}}=\frac{32}{74}
Cancel out 45 in both numerator and denominator.
\frac{x}{\frac{37}{3}}=\frac{16}{37}
Reduce the fraction \frac{32}{74} to lowest terms by extracting and canceling out 2.
x=\frac{16}{37}\times \frac{37}{3}
Multiply both sides by \frac{37}{3}.
x=\frac{16\times 37}{37\times 3}
Multiply \frac{16}{37} times \frac{37}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{16}{3}
Cancel out 37 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}