Solve for x
x=1
Graph
Share
Copied to clipboard
\frac{x}{\frac{7\times 21}{3\times 2}-21}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Multiply \frac{7}{3} times \frac{21}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\frac{147}{6}-21}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Do the multiplications in the fraction \frac{7\times 21}{3\times 2}.
\frac{x}{\frac{49}{2}-21}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Reduce the fraction \frac{147}{6} to lowest terms by extracting and canceling out 3.
\frac{x}{\frac{49}{2}-\frac{42}{2}}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Convert 21 to fraction \frac{42}{2}.
\frac{x}{\frac{49-42}{2}}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Since \frac{49}{2} and \frac{42}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Subtract 42 from 49 to get 7.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{5+4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Since \frac{5}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{9}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Add 5 and 4 to get 9.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{3-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Divide 9 by 3 to get 3.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{3-\frac{1}{3}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{9}{3}-\frac{1}{3}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Convert 3 to fraction \frac{9}{3}.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{9-1}{3}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Since \frac{9}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Subtract 1 from 9 to get 8.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{1}{2}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{1}{2}+\frac{8}{2}-\frac{1}{3}}}}{\frac{4}{5}+2}
Convert 4 to fraction \frac{8}{2}.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{1+8}{2}-\frac{1}{3}}}}{\frac{4}{5}+2}
Since \frac{1}{2} and \frac{8}{2} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{9}{2}-\frac{1}{3}}}}{\frac{4}{5}+2}
Add 1 and 8 to get 9.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{27}{6}-\frac{2}{6}}}}{\frac{4}{5}+2}
Least common multiple of 2 and 3 is 6. Convert \frac{9}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{27-2}{6}}}}{\frac{4}{5}+2}
Since \frac{27}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{25}{6}}}}{\frac{4}{5}+2}
Subtract 2 from 27 to get 25.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{8}{3}\times \frac{6}{25}}}{\frac{4}{5}+2}
Divide \frac{8}{3} by \frac{25}{6} by multiplying \frac{8}{3} by the reciprocal of \frac{25}{6}.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{8\times 6}{3\times 25}}}{\frac{4}{5}+2}
Multiply \frac{8}{3} times \frac{6}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{48}{75}}}{\frac{4}{5}+2}
Do the multiplications in the fraction \frac{8\times 6}{3\times 25}.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{16}{25}}}{\frac{4}{5}+2}
Reduce the fraction \frac{48}{75} to lowest terms by extracting and canceling out 3.
\frac{x}{\frac{7}{2}}=\frac{\frac{4}{5}}{\frac{4}{5}+2}
Rewrite the square root of the division \frac{16}{25} as the division of square roots \frac{\sqrt{16}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{x}{\frac{7}{2}}=\frac{\frac{4}{5}}{\frac{4}{5}+\frac{10}{5}}
Convert 2 to fraction \frac{10}{5}.
\frac{x}{\frac{7}{2}}=\frac{\frac{4}{5}}{\frac{4+10}{5}}
Since \frac{4}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{7}{2}}=\frac{\frac{4}{5}}{\frac{14}{5}}
Add 4 and 10 to get 14.
\frac{x}{\frac{7}{2}}=\frac{4}{5}\times \frac{5}{14}
Divide \frac{4}{5} by \frac{14}{5} by multiplying \frac{4}{5} by the reciprocal of \frac{14}{5}.
\frac{x}{\frac{7}{2}}=\frac{4\times 5}{5\times 14}
Multiply \frac{4}{5} times \frac{5}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\frac{7}{2}}=\frac{4}{14}
Cancel out 5 in both numerator and denominator.
\frac{x}{\frac{7}{2}}=\frac{2}{7}
Reduce the fraction \frac{4}{14} to lowest terms by extracting and canceling out 2.
x=\frac{2}{7}\times \frac{7}{2}
Multiply both sides by \frac{7}{2}.
x=1
Cancel out \frac{2}{7} and its reciprocal \frac{7}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}