Solve for x
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Share
Copied to clipboard
\frac{x}{\frac{5}{4}+\frac{6}{4}-\frac{5}{12}}=\frac{\frac{6}{7}}{\frac{4}{3}+\frac{1}{2}-\frac{1}{6}}
Least common multiple of 4 and 2 is 4. Convert \frac{5}{4} and \frac{3}{2} to fractions with denominator 4.
\frac{x}{\frac{5+6}{4}-\frac{5}{12}}=\frac{\frac{6}{7}}{\frac{4}{3}+\frac{1}{2}-\frac{1}{6}}
Since \frac{5}{4} and \frac{6}{4} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{11}{4}-\frac{5}{12}}=\frac{\frac{6}{7}}{\frac{4}{3}+\frac{1}{2}-\frac{1}{6}}
Add 5 and 6 to get 11.
\frac{x}{\frac{33}{12}-\frac{5}{12}}=\frac{\frac{6}{7}}{\frac{4}{3}+\frac{1}{2}-\frac{1}{6}}
Least common multiple of 4 and 12 is 12. Convert \frac{11}{4} and \frac{5}{12} to fractions with denominator 12.
\frac{x}{\frac{33-5}{12}}=\frac{\frac{6}{7}}{\frac{4}{3}+\frac{1}{2}-\frac{1}{6}}
Since \frac{33}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{\frac{28}{12}}=\frac{\frac{6}{7}}{\frac{4}{3}+\frac{1}{2}-\frac{1}{6}}
Subtract 5 from 33 to get 28.
\frac{x}{\frac{7}{3}}=\frac{\frac{6}{7}}{\frac{4}{3}+\frac{1}{2}-\frac{1}{6}}
Reduce the fraction \frac{28}{12} to lowest terms by extracting and canceling out 4.
\frac{x}{\frac{7}{3}}=\frac{\frac{6}{7}}{\frac{8}{6}+\frac{3}{6}-\frac{1}{6}}
Least common multiple of 3 and 2 is 6. Convert \frac{4}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{x}{\frac{7}{3}}=\frac{\frac{6}{7}}{\frac{8+3}{6}-\frac{1}{6}}
Since \frac{8}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{7}{3}}=\frac{\frac{6}{7}}{\frac{11}{6}-\frac{1}{6}}
Add 8 and 3 to get 11.
\frac{x}{\frac{7}{3}}=\frac{\frac{6}{7}}{\frac{11-1}{6}}
Since \frac{11}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{\frac{7}{3}}=\frac{\frac{6}{7}}{\frac{10}{6}}
Subtract 1 from 11 to get 10.
\frac{x}{\frac{7}{3}}=\frac{\frac{6}{7}}{\frac{5}{3}}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
\frac{x}{\frac{7}{3}}=\frac{6}{7}\times \frac{3}{5}
Divide \frac{6}{7} by \frac{5}{3} by multiplying \frac{6}{7} by the reciprocal of \frac{5}{3}.
\frac{x}{\frac{7}{3}}=\frac{6\times 3}{7\times 5}
Multiply \frac{6}{7} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\frac{7}{3}}=\frac{18}{35}
Do the multiplications in the fraction \frac{6\times 3}{7\times 5}.
x=\frac{18}{35}\times \frac{7}{3}
Multiply both sides by \frac{7}{3}.
x=\frac{18\times 7}{35\times 3}
Multiply \frac{18}{35} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{126}{105}
Do the multiplications in the fraction \frac{18\times 7}{35\times 3}.
x=\frac{6}{5}
Reduce the fraction \frac{126}{105} to lowest terms by extracting and canceling out 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}