Evaluate
3\sqrt{2}x
Differentiate w.r.t. x
3 \sqrt{2} = 4.242640687
Graph
Share
Copied to clipboard
\frac{\frac{x}{\sqrt{\frac{9+1}{3}}}}{\frac{2}{5}\sqrt{\frac{2\times 3+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Multiply 3 and 3 to get 9.
\frac{\frac{x}{\sqrt{\frac{10}{3}}}}{\frac{2}{5}\sqrt{\frac{2\times 3+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Add 9 and 1 to get 10.
\frac{\frac{x}{\frac{\sqrt{10}}{\sqrt{3}}}}{\frac{2}{5}\sqrt{\frac{2\times 3+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Rewrite the square root of the division \sqrt{\frac{10}{3}} as the division of square roots \frac{\sqrt{10}}{\sqrt{3}}.
\frac{\frac{x}{\frac{\sqrt{10}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}}{\frac{2}{5}\sqrt{\frac{2\times 3+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Rationalize the denominator of \frac{\sqrt{10}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{x}{\frac{\sqrt{10}\sqrt{3}}{3}}}{\frac{2}{5}\sqrt{\frac{2\times 3+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
The square of \sqrt{3} is 3.
\frac{\frac{x}{\frac{\sqrt{30}}{3}}}{\frac{2}{5}\sqrt{\frac{2\times 3+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{x\times 3}{\sqrt{30}}}{\frac{2}{5}\sqrt{\frac{2\times 3+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Divide x by \frac{\sqrt{30}}{3} by multiplying x by the reciprocal of \frac{\sqrt{30}}{3}.
\frac{\frac{x\times 3\sqrt{30}}{\left(\sqrt{30}\right)^{2}}}{\frac{2}{5}\sqrt{\frac{2\times 3+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Rationalize the denominator of \frac{x\times 3}{\sqrt{30}} by multiplying numerator and denominator by \sqrt{30}.
\frac{\frac{x\times 3\sqrt{30}}{30}}{\frac{2}{5}\sqrt{\frac{2\times 3+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
The square of \sqrt{30} is 30.
\frac{\frac{x\times 3\sqrt{30}}{30}}{\frac{2}{5}\sqrt{\frac{6+1}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Multiply 2 and 3 to get 6.
\frac{\frac{x\times 3\sqrt{30}}{30}}{\frac{2}{5}\sqrt{\frac{7}{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Add 6 and 1 to get 7.
\frac{\frac{x\times 3\sqrt{30}}{30}}{\frac{2}{5}\times \frac{\sqrt{7}}{\sqrt{3}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Rewrite the square root of the division \sqrt{\frac{7}{3}} as the division of square roots \frac{\sqrt{7}}{\sqrt{3}}.
\frac{\frac{x\times 3\sqrt{30}}{30}}{\frac{2}{5}\times \frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{x\times 3\sqrt{30}}{30}}{\frac{2}{5}\times \frac{\sqrt{7}\sqrt{3}}{3}}\times 4\sqrt{\frac{1\times 5+2}{5}}
The square of \sqrt{3} is 3.
\frac{\frac{x\times 3\sqrt{30}}{30}}{\frac{2}{5}\times \frac{\sqrt{21}}{3}}\times 4\sqrt{\frac{1\times 5+2}{5}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{x\times 3\sqrt{30}}{30}}{\frac{2\sqrt{21}}{5\times 3}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Multiply \frac{2}{5} times \frac{\sqrt{21}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x\times 3\sqrt{30}\times 5\times 3}{30\times 2\sqrt{21}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Divide \frac{x\times 3\sqrt{30}}{30} by \frac{2\sqrt{21}}{5\times 3} by multiplying \frac{x\times 3\sqrt{30}}{30} by the reciprocal of \frac{2\sqrt{21}}{5\times 3}.
\frac{3\sqrt{30}x}{2\times 2\sqrt{21}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Cancel out 3\times 5 in both numerator and denominator.
\frac{3\sqrt{30}x\sqrt{21}}{2\times 2\left(\sqrt{21}\right)^{2}}\times 4\sqrt{\frac{1\times 5+2}{5}}
Rationalize the denominator of \frac{3\sqrt{30}x}{2\times 2\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
\frac{3\sqrt{30}x\sqrt{21}}{2\times 2\times 21}\times 4\sqrt{\frac{1\times 5+2}{5}}
The square of \sqrt{21} is 21.
\frac{3\sqrt{630}x}{2\times 2\times 21}\times 4\sqrt{\frac{1\times 5+2}{5}}
To multiply \sqrt{30} and \sqrt{21}, multiply the numbers under the square root.
\frac{3\sqrt{630}x}{4\times 21}\times 4\sqrt{\frac{1\times 5+2}{5}}
Multiply 2 and 2 to get 4.
\frac{3\sqrt{630}x}{84}\times 4\sqrt{\frac{1\times 5+2}{5}}
Multiply 4 and 21 to get 84.
\frac{3\times 3\sqrt{70}x}{84}\times 4\sqrt{\frac{1\times 5+2}{5}}
Factor 630=3^{2}\times 70. Rewrite the square root of the product \sqrt{3^{2}\times 70} as the product of square roots \sqrt{3^{2}}\sqrt{70}. Take the square root of 3^{2}.
\frac{9\sqrt{70}x}{84}\times 4\sqrt{\frac{1\times 5+2}{5}}
Multiply 3 and 3 to get 9.
\frac{3}{28}\sqrt{70}x\times 4\sqrt{\frac{1\times 5+2}{5}}
Divide 9\sqrt{70}x by 84 to get \frac{3}{28}\sqrt{70}x.
\frac{3\times 4}{28}\sqrt{70}x\sqrt{\frac{1\times 5+2}{5}}
Express \frac{3}{28}\times 4 as a single fraction.
\frac{12}{28}\sqrt{70}x\sqrt{\frac{1\times 5+2}{5}}
Multiply 3 and 4 to get 12.
\frac{3}{7}\sqrt{70}x\sqrt{\frac{1\times 5+2}{5}}
Reduce the fraction \frac{12}{28} to lowest terms by extracting and canceling out 4.
\frac{3}{7}\sqrt{70}x\sqrt{\frac{5+2}{5}}
Multiply 1 and 5 to get 5.
\frac{3}{7}\sqrt{70}x\sqrt{\frac{7}{5}}
Add 5 and 2 to get 7.
\frac{3}{7}\sqrt{70}x\times \frac{\sqrt{7}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{7}{5}} as the division of square roots \frac{\sqrt{7}}{\sqrt{5}}.
\frac{3}{7}\sqrt{70}x\times \frac{\sqrt{7}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3}{7}\sqrt{70}x\times \frac{\sqrt{7}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{3}{7}\sqrt{70}x\times \frac{\sqrt{35}}{5}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\frac{3\sqrt{35}}{7\times 5}\sqrt{70}x
Multiply \frac{3}{7} times \frac{\sqrt{35}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3\sqrt{35}}{35}\sqrt{70}x
Multiply 7 and 5 to get 35.
\frac{3\sqrt{35}\sqrt{70}}{35}x
Express \frac{3\sqrt{35}}{35}\sqrt{70} as a single fraction.
\frac{3\sqrt{35}\sqrt{70}x}{35}
Express \frac{3\sqrt{35}\sqrt{70}}{35}x as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}