Solve for J (complex solution)
\left\{\begin{matrix}J=\frac{y^{2}+x-2xy}{\left(x-y\right)^{2}}\text{, }&x\neq y\\J\in \mathrm{C}\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(y=1\text{ and }x=1\right)\end{matrix}\right.
Solve for J
\left\{\begin{matrix}J=\frac{y^{2}+x-2xy}{\left(x-y\right)^{2}}\text{, }&x\neq y\\J\in \mathrm{R}\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(y=1\text{ and }x=1\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{-2Jy+\sqrt{1-4y+4Jy+4y^{2}-4Jy^{2}}+2y-1}{2J}\text{; }x=-\frac{-2Jy-\sqrt{1-4y+4Jy+4y^{2}-4Jy^{2}}+2y-1}{2J}\text{, }&J\neq 0\\x=-\frac{y^{2}}{1-2y}\text{, }&J=0\text{ and }y\neq \frac{1}{2}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{-2Jy+\sqrt{1-4y+4Jy+4y^{2}-4Jy^{2}}+2y-1}{2J}\text{; }x=-\frac{-2Jy-\sqrt{1-4y+4Jy+4y^{2}-4Jy^{2}}+2y-1}{2J}\text{, }&\left(y\geq \frac{\sqrt{J^{2}-J}-J+1}{2\left(1-J\right)}\text{ or }J\leq 1\right)\text{ and }\left(y\leq -\frac{\sqrt{J^{2}-J}+J-1}{2\left(1-J\right)}\text{ or }J\leq 1\right)\text{ and }\left(J>0\text{ or }y\leq -\frac{\sqrt{J^{2}-J}+J-1}{2\left(1-J\right)}\text{ or }y\geq \frac{\sqrt{J^{2}-J}-J+1}{2\left(1-J\right)}\right)\text{ and }J\neq 0\\x=-\frac{y^{2}}{1-2y}\text{, }&J=0\text{ and }y\neq \frac{1}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
x+y^{2}-\left(x^{2}-2xy+y^{2}\right)J=2xy
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
x+y^{2}-\left(x^{2}J-2xyJ+y^{2}J\right)=2xy
Use the distributive property to multiply x^{2}-2xy+y^{2} by J.
x+y^{2}-x^{2}J+2xyJ-y^{2}J=2xy
To find the opposite of x^{2}J-2xyJ+y^{2}J, find the opposite of each term.
y^{2}-x^{2}J+2xyJ-y^{2}J=2xy-x
Subtract x from both sides.
-x^{2}J+2xyJ-y^{2}J=2xy-x-y^{2}
Subtract y^{2} from both sides.
\left(-x^{2}+2xy-y^{2}\right)J=2xy-x-y^{2}
Combine all terms containing J.
\frac{\left(-x^{2}+2xy-y^{2}\right)J}{-x^{2}+2xy-y^{2}}=\frac{2xy-x-y^{2}}{-x^{2}+2xy-y^{2}}
Divide both sides by -x^{2}+2xy-y^{2}.
J=\frac{2xy-x-y^{2}}{-x^{2}+2xy-y^{2}}
Dividing by -x^{2}+2xy-y^{2} undoes the multiplication by -x^{2}+2xy-y^{2}.
J=-\frac{2xy-x-y^{2}}{\left(x-y\right)^{2}}
Divide -x-y^{2}+2xy by -x^{2}+2xy-y^{2}.
x+y^{2}-\left(x^{2}-2xy+y^{2}\right)J=2xy
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
x+y^{2}-\left(x^{2}J-2xyJ+y^{2}J\right)=2xy
Use the distributive property to multiply x^{2}-2xy+y^{2} by J.
x+y^{2}-x^{2}J+2xyJ-y^{2}J=2xy
To find the opposite of x^{2}J-2xyJ+y^{2}J, find the opposite of each term.
y^{2}-x^{2}J+2xyJ-y^{2}J=2xy-x
Subtract x from both sides.
-x^{2}J+2xyJ-y^{2}J=2xy-x-y^{2}
Subtract y^{2} from both sides.
\left(-x^{2}+2xy-y^{2}\right)J=2xy-x-y^{2}
Combine all terms containing J.
\frac{\left(-x^{2}+2xy-y^{2}\right)J}{-x^{2}+2xy-y^{2}}=\frac{2xy-x-y^{2}}{-x^{2}+2xy-y^{2}}
Divide both sides by -x^{2}+2xy-y^{2}.
J=\frac{2xy-x-y^{2}}{-x^{2}+2xy-y^{2}}
Dividing by -x^{2}+2xy-y^{2} undoes the multiplication by -x^{2}+2xy-y^{2}.
J=-\frac{2xy-x-y^{2}}{\left(x-y\right)^{2}}
Divide 2xy-x-y^{2} by -x^{2}+2xy-y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}