Solve for x
x=\frac{563-6z_{2}}{11}
Solve for z_2
z_{2}=\frac{563-11x}{6}
Graph
Share
Copied to clipboard
11x+6\left(z_{2}+62\right)-572=363
Multiply both sides of the equation by 11.
11x+6z_{2}+372-572=363
Use the distributive property to multiply 6 by z_{2}+62.
11x+6z_{2}-200=363
Subtract 572 from 372 to get -200.
11x-200=363-6z_{2}
Subtract 6z_{2} from both sides.
11x=363-6z_{2}+200
Add 200 to both sides.
11x=563-6z_{2}
Add 363 and 200 to get 563.
\frac{11x}{11}=\frac{563-6z_{2}}{11}
Divide both sides by 11.
x=\frac{563-6z_{2}}{11}
Dividing by 11 undoes the multiplication by 11.
11x+6\left(z_{2}+62\right)-572=363
Multiply both sides of the equation by 11.
11x+6z_{2}+372-572=363
Use the distributive property to multiply 6 by z_{2}+62.
11x+6z_{2}-200=363
Subtract 572 from 372 to get -200.
6z_{2}-200=363-11x
Subtract 11x from both sides.
6z_{2}=363-11x+200
Add 200 to both sides.
6z_{2}=563-11x
Add 363 and 200 to get 563.
\frac{6z_{2}}{6}=\frac{563-11x}{6}
Divide both sides by 6.
z_{2}=\frac{563-11x}{6}
Dividing by 6 undoes the multiplication by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}