Solve for x
x=\frac{14-y}{3}
Solve for y
y=14-3x
Graph
Share
Copied to clipboard
x+6-4x=-8+y
Subtract 4x from both sides.
-3x+6=-8+y
Combine x and -4x to get -3x.
-3x=-8+y-6
Subtract 6 from both sides.
-3x=-14+y
Subtract 6 from -8 to get -14.
-3x=y-14
The equation is in standard form.
\frac{-3x}{-3}=\frac{y-14}{-3}
Divide both sides by -3.
x=\frac{y-14}{-3}
Dividing by -3 undoes the multiplication by -3.
x=\frac{14-y}{3}
Divide -14+y by -3.
4x-8+y=x+6
Swap sides so that all variable terms are on the left hand side.
-8+y=x+6-4x
Subtract 4x from both sides.
-8+y=-3x+6
Combine x and -4x to get -3x.
y=-3x+6+8
Add 8 to both sides.
y=-3x+14
Add 6 and 8 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}