Solve for x
x=-\frac{32y}{3}
Solve for y
y=-\frac{3x}{32}
Graph
Share
Copied to clipboard
x+4y-\frac{1}{4}x=-4y
Subtract \frac{1}{4}x from both sides.
\frac{3}{4}x+4y=-4y
Combine x and -\frac{1}{4}x to get \frac{3}{4}x.
\frac{3}{4}x=-4y-4y
Subtract 4y from both sides.
\frac{3}{4}x=-8y
Combine -4y and -4y to get -8y.
\frac{\frac{3}{4}x}{\frac{3}{4}}=-\frac{8y}{\frac{3}{4}}
Divide both sides of the equation by \frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{8y}{\frac{3}{4}}
Dividing by \frac{3}{4} undoes the multiplication by \frac{3}{4}.
x=-\frac{32y}{3}
Divide -8y by \frac{3}{4} by multiplying -8y by the reciprocal of \frac{3}{4}.
x+4y+4y=\frac{1}{4}x
Add 4y to both sides.
x+8y=\frac{1}{4}x
Combine 4y and 4y to get 8y.
8y=\frac{1}{4}x-x
Subtract x from both sides.
8y=-\frac{3}{4}x
Combine \frac{1}{4}x and -x to get -\frac{3}{4}x.
8y=-\frac{3x}{4}
The equation is in standard form.
\frac{8y}{8}=-\frac{\frac{3x}{4}}{8}
Divide both sides by 8.
y=-\frac{\frac{3x}{4}}{8}
Dividing by 8 undoes the multiplication by 8.
y=-\frac{3x}{32}
Divide -\frac{3x}{4} by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}