Solve for x
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Share
Copied to clipboard
x+3x-21=6-4\left(2x+3\right)
Use the distributive property to multiply 3 by x-7.
4x-21=6-4\left(2x+3\right)
Combine x and 3x to get 4x.
4x-21=6-8x-12
Use the distributive property to multiply -4 by 2x+3.
4x-21=-6-8x
Subtract 12 from 6 to get -6.
4x-21+8x=-6
Add 8x to both sides.
12x-21=-6
Combine 4x and 8x to get 12x.
12x=-6+21
Add 21 to both sides.
12x=15
Add -6 and 21 to get 15.
x=\frac{15}{12}
Divide both sides by 12.
x=\frac{5}{4}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}