Solve for x
x=\frac{1-\sqrt{21}}{6}\approx -0.597095949
x=\frac{2}{3}\approx 0.666666667
x=\frac{\sqrt{21}+1}{6}\approx 0.930429282
x=-1
Graph
Share
Copied to clipboard
x+3\left(4-12x^{2}+9\left(x^{2}\right)^{2}\right)=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-3x^{2}\right)^{2}.
x+3\left(4-12x^{2}+9x^{4}\right)=2
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x+12-36x^{2}+27x^{4}=2
Use the distributive property to multiply 3 by 4-12x^{2}+9x^{4}.
x+12-36x^{2}+27x^{4}-2=0
Subtract 2 from both sides.
x+10-36x^{2}+27x^{4}=0
Subtract 2 from 12 to get 10.
27x^{4}-36x^{2}+x+10=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±\frac{10}{27},±\frac{10}{9},±\frac{10}{3},±10,±\frac{5}{27},±\frac{5}{9},±\frac{5}{3},±5,±\frac{2}{27},±\frac{2}{9},±\frac{2}{3},±2,±\frac{1}{27},±\frac{1}{9},±\frac{1}{3},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 10 and q divides the leading coefficient 27. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
27x^{3}-27x^{2}-9x+10=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 27x^{4}-36x^{2}+x+10 by x+1 to get 27x^{3}-27x^{2}-9x+10. Solve the equation where the result equals to 0.
±\frac{10}{27},±\frac{10}{9},±\frac{10}{3},±10,±\frac{5}{27},±\frac{5}{9},±\frac{5}{3},±5,±\frac{2}{27},±\frac{2}{9},±\frac{2}{3},±2,±\frac{1}{27},±\frac{1}{9},±\frac{1}{3},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 10 and q divides the leading coefficient 27. List all candidates \frac{p}{q}.
x=\frac{2}{3}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
9x^{2}-3x-5=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 27x^{3}-27x^{2}-9x+10 by 3\left(x-\frac{2}{3}\right)=3x-2 to get 9x^{2}-3x-5. Solve the equation where the result equals to 0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 9\left(-5\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 9 for a, -3 for b, and -5 for c in the quadratic formula.
x=\frac{3±3\sqrt{21}}{18}
Do the calculations.
x=\frac{1-\sqrt{21}}{6} x=\frac{\sqrt{21}+1}{6}
Solve the equation 9x^{2}-3x-5=0 when ± is plus and when ± is minus.
x=-1 x=\frac{2}{3} x=\frac{1-\sqrt{21}}{6} x=\frac{\sqrt{21}+1}{6}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}