Solve for x
x=9
x=1
Graph
Share
Copied to clipboard
\left(x+3\right)^{2}=\left(4\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+6x+9=\left(4\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=4^{2}\left(\sqrt{x}\right)^{2}
Expand \left(4\sqrt{x}\right)^{2}.
x^{2}+6x+9=16\left(\sqrt{x}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x^{2}+6x+9=16x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+6x+9-16x=0
Subtract 16x from both sides.
x^{2}-10x+9=0
Combine 6x and -16x to get -10x.
a+b=-10 ab=9
To solve the equation, factor x^{2}-10x+9 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-9 -3,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 9.
-1-9=-10 -3-3=-6
Calculate the sum for each pair.
a=-9 b=-1
The solution is the pair that gives sum -10.
\left(x-9\right)\left(x-1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=9 x=1
To find equation solutions, solve x-9=0 and x-1=0.
9+3=4\sqrt{9}
Substitute 9 for x in the equation x+3=4\sqrt{x}.
12=12
Simplify. The value x=9 satisfies the equation.
1+3=4\sqrt{1}
Substitute 1 for x in the equation x+3=4\sqrt{x}.
4=4
Simplify. The value x=1 satisfies the equation.
x=9 x=1
List all solutions of x+3=4\sqrt{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}